2,070 research outputs found

    Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies

    Get PDF
    Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations

    Transport of Asian ozone pollution into surface air over the western United States in spring

    Get PDF
    Many prior studies clearly document episodic Asian pollution in the western U.S. free troposphere. Here, we examine the mechanisms involved in the transport of Asian pollution plumes into western U.S. surface air through an integrated analysis of in situ and satellite measurements in May–June 2010 with a new global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3). We find that AM3 with full stratosphere-troposphere chemistry nudged to reanalysis winds successfully reproduces observed sharp ozone gradients above California, including the interleaving and mixing of Asian pollution and stratospheric air associated with complex interactions of midlatitude cyclone air streams. Asian pollution descends isentropically behind cold fronts; at ∼800 hPa a maximum enhancement to ozone occurs over the southwestern U.S., including the densely populated Los Angeles Basin. During strong episodes, Asian emissions can contribute 8–15 ppbv ozone in the model on days when observed daily maximum 8-h average ozone (MDA8 O3) exceeds 60 ppbv. We find that in the absence of Asian anthropogenic emissions, 20% of MDA8 O3 exceedances of 60 ppbv in the model would not have occurred in the southwestern USA. For a 75 ppbv threshold, that statistic increases to 53%. Our analysis indicates the potential for Asian emissions to contribute to high-O3 episodes over the high-elevation western USA, with implications for attaining more stringent ozone standards in this region. We further demonstrate a proof-of-concept approach using satellite CO column measurements as a qualitative early warning indicator to forecast Asian ozone pollution events in the western U.S. with lead times of 1–3 days

    Cancer and psychiatric diagnoses in the year preceding suicide

    Get PDF
    BACKGROUND: Patients with cancer are known to be at increased risk for suicide but little is known about the interaction between cancer and psychiatric diagnoses, another well-documented risk factor. METHODS: Electronic medical records from nine healthcare systems participating in the Mental Health Research Network were aggregated to form a retrospective case-control study, with ICD-9 codes used to identify diagnoses in the 1 year prior to death by suicide for cases (N = 3330) or matching index date for controls (N = 297,034). Conditional logistic regression was used to assess differences in cancer and psychiatric diagnoses between cases and controls, controlling for sex and age. RESULTS: Among patients without concurrent psychiatric diagnoses, cancer at disease sites with lower average 5-year survival rates were associated with significantly greater relative risk, while cancer disease sites with survival rates of \u3e70% conferred no increased risk. Patients with most psychiatric diagnoses were at higher risk, however, there was no additional risk conferred to these patients by a concurrent cancer diagnosis. CONCLUSION: We found no evidence of a synergistic effect between cancer and psychiatric diagnoses. However, cancer patients with a concurrent psychiatric illness remain at the highest relative risk for suicide, regardless of cancer disease site, due to strong independent associations between psychiatric diagnoses and suicide. For patients without a concurrent psychiatric illness, cancer disease sites associated with worse prognoses appeared to confer greater suicide risk

    Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility

    Get PDF
    Rheumatoid arthritis (RA) is an archetypal, common, complex autoimmune disease with both genetic and environmental contributions to disease aetiology. Two novel RA susceptibility loci have been reported from recent genome-wide and candidate gene association studies. We, therefore, investigated the evidence for association of the STAT4 and TRAF1/C5 loci with RA using imputed data from the Wellcome Trust Case Control Consortium (WTCCC). No evidence for association of variants mapping to the TRAF1/C5 gene was detected in the 1860 RA cases and 2930 control samples tested in that study. Variants mapping to the STAT4 gene did show evidence for association (rs7574865, P = 0.04). Given the association of the TRAF1/C5 locus in two previous large case–control series from populations of European descent and the evidence for association of the STAT4 locus in the WTCCC study, single nucleotide polymorphisms mapping to these loci were tested for association with RA in an independent UK series comprising DNA from >3000 cases with disease and >3000 controls and a combined analysis including the WTCCC data was undertaken. We confirm association of the STAT4 and the TRAF1/C5 loci with RA bringing to 5 the number of confirmed susceptibility loci. The effect sizes are less than those reported previously but are likely to be a more accurate reflection of the true effect size given the larger size of the cohort investigated in the current study

    Ureaplasma-driven neonatal neuroinflammation: novel insights from an ovine model

    Get PDF
    Ureaplasma species (spp.) are considered commensals of the adult genitourinary tract, but have been associated with chorioamnionitis, preterm birth, and invasive infections in neonates, including meningitis. Data on mechanisms involved in Ureaplasma-driven neuroinflammation are scarce. The present study addressed brain inflammatory responses in preterm lambs exposed to Ureaplasma parvum (UP) in utero. 7 days after intra-amniotic injection of UP (n = 10) or saline (n = 11), lambs were surgically delivered at gestational day 128–129. Expression of inflammatory markers was assessed in different brain regions using qRT-PCR and in cerebrospinal fluid (CSF) by multiplex immunoassay. CSF was analyzed for UP presence using ureB-based real-time PCR, and MRI scans documented cerebral white matter area and cortical folding. Cerebral tissue levels of atypical chemokine receptor (ACKR) 3, caspases 1-like, 2, 7, and C–X–C chemokine receptor (CXCR) 4 mRNA, as well as CSF interleukin-8 protein concentrations were significantly increased in UP-exposed lambs. UP presence in CSF was confirmed in one animal. Cortical folding and white matter area did not differ among groups. The present study confirms a role of caspases and the transmembrane receptors ACKR3 and CXCR4 in Ureaplasma-driven neuroinflammation. Enhanced caspase 1-like, 2, and 7 expression may reflect cell death. Increased ACKR3 and CXCR4 expression has been associated with inflammatory central nervous system (CNS) diseases and impaired blood–brain barrier function. According to these data and previous in vitro findings from our group, we speculate that Ureaplasma-induced caspase and receptor responses affect CNS barrier properties and thus facilitate neuroinflammation

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Which outcomes are most important to measure in patients with COVID-19 and how and when should these be measured? Development of an international standard set of outcomes measures for clinical use in patients with COVID-19: a report of the International Consortium for Health Outcomes Measurement (ICHOM) COVID-19 Working Group.

    Get PDF
    Objectives: The COVID-19 pandemic has resulted in widespread morbidity and mortality with the consequences expected to be felt for many years. Significant variation exists in the care even of similar patients with COVID-19, including treatment practices within and between institutions. Outcome measures vary among clinical trials on the same therapies. Understanding which therapies are of most value is not possible unless consensus can be reached on which outcomes are most important to measure. Furthermore, consensus on the most important outcomes may enable patients to monitor and track their care, and may help providers to improve the care they offer through quality improvement. To develop a standardised minimum set of outcomes for clinical care, the International Consortium for Health Outcomes Measurement (ICHOM) assembled a working group (WG) of 28 volunteers, including health professionals, patients and patient representatives. Design: A list of outcomes important to patients and professionals was generated from a systematic review of the published literature using the MEDLINE database, from review of outcomes being measured in ongoing clinical trials, from a survey distributed to patients and patient networks, and from previously published ICHOM standard sets in other disease areas. Using an online-modified Delphi process, the WG selected outcomes of greatest importance. Results: The outcomes considered by the WG to be most important were selected and categorised into five domains: (1) functional status and quality of life, (2) mental functioning, (3) social functioning, (4) clinical outcomes and (5) symptoms. The WG identified demographic and clinical variables for use as case-mix risk adjusters. These included baseline demographics, clinical factors and treatment-related factors. Conclusion: Implementation of these consensus recommendations could help institutions to monitor, compare and improve the quality and delivery of care to patients with COVID-19. Their consistent definition and collection could also broaden the implementation of more patient-centric clinical outcomes research.</p

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations

    Get PDF
    Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore