38 research outputs found

    Specificity factors in cytoplasmic polyadenylation

    Get PDF
    Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3′ untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man

    'Beyond the universal soldier: combat trauma in classical antiquity'

    Get PDF

    The end of the message : 3'-end processing leading to polyadenylated messenger RNA

    No full text
    Almost all messenger RNAs carry a polyadenylate tail that is added in a post-transcriptional reaction. In the nuclei of animal cells, the 3'-end of the RNA is formed by endonucleolytic cleavage of the primary transcript at the site of poly(A) addition, followed by the polymerisation of the tail. The reaction depends on specific RNA sequences upstream as well as downstream of the polyadenylation site. Cleavage and polyadenylation can be uncoupled in vitro. Polyadenylation is carried out by poly(A) polymerase with the aid of a specificity factor that binds the polyadenylation signal AAUAAA. Several additional factors are required for the initial cleavage. A newly discovered poly(A)-binding protein stimulates poly(A) tail synthesis and may be involved in the control of tail length. Polyadenylation reactions different from this scheme, either in other organisms or under special physiological circumstances, are discussed

    Zygotic control of maternal cyclin A1 translation and mRNA stability

    No full text
    International audienceCyclin mRNAs are unstable in the adult cell cycle yet are stable during the first 12 cell divisions in Xenopus laevis. We recently reported that cyclin A1 and B2 maternal mRNAs are deadenylated upon completion of the 12th division (Audic et al. [2001] Mol. Cell Biol. 21:1662-1671). Deadenylation is mediated by the 3' untranslated region (UTR) of the mRNA and precedes the terminal disappearance of the cyclin proteins, with both processes requiring zygotic transcription. The purpose of the current study was (1) to ask whether deadenylation leads to translational repression and/or destabilization of endogenous cyclin A1 and B2 mRNAs, and (2) to further characterize the regulatory sequences required. We show that zygote-driven deadenylation leads to translational repression and mRNA destabilization. A 99-nucleotide region of the 3'UTR of the cyclin A1 mRNA mediates both deadenylation and destabilization. Surprisingly, two AU-rich consensus elements within this region are dispensable for this activity. These results suggest that zygote-dependent deadenylation, translational repression, and mRNA destabilization by means of novel 3'UTR elements contribute to the disappearance of maternal cyclins. They also suggest that translational control of cyclins may play a role in the transition to the adult cell cycle. These data concur with previous studies in Drosophila showing that zygote-mediated degradation of maternal cdc25 mRNA may be a general mechanism whereby transition to the adult cell cycle proceeds
    corecore