1,059 research outputs found

    Collision Timing Attack when Breaking 42 AES ASIC Cores

    Get PDF
    A collision timing attack which exploits the data-dependent timing characteristics of combinational circuits is demonstrated. The attack is based on the correlation collision attack presented at CHES 2010, and the timing attributes of combinational circuits when implementing complex functions, e.g., S-boxes, in hardware are exploited by the help of the scheme used in another CHES 2010 paper namely fault sensitivity analysis. Similarly to other side-channel collision attacks, our approach avoids the need for a hypothetical model to recover the secret materials. The results when attacking all 14 AES ASIC cores of the SASEBO LSI chips in three different process technologies, 130nm, 90nm, and 65nm, are presented. Successfully breaking the DPA-protected and the fault attack protected cores indicates the strength of the attack

    Achieving Side-Channel Protection with Dynamic Logic Reconfiguration on Modern FPGAs

    Get PDF
    Reconfigurability is a unique feature of modern FPGA devices to load hardware circuits just on demand. This also implies that a completely different set of circuits might operate at the exact same location of the FPGA at different time slots, making it difficult for an external observer or attacker to predict what will happen at what time. In this work we present and evaluate a novel hardware implementation of the lightweight cipher PRESENT with built-in side-channel countermeasures based on dynamic logic reconfiguration. In our design we make use of Configurable Look-Up Tables (CFGLUT) integrated in modern Xilinx FPGAs to nearly instantaneously change hardware internals of our cipher implementation for improved resistance against side-channel attacks. We provide evidence from practical experiments based on a Spartan-6 platform that even with 10 million recorded power traces we were unable to detect a first-order leakage using the state-of-the-art leakage assessment

    Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware - Pitfalls of Memory Primitives

    Get PDF
    Block Memory Content Scrambling (BMS), presented at CHES 2011, enables an effective way of first-order side-channel protection for cryptographic primitives at the cost of a significant reconfiguration time for the mask update. In this work we analyze alternative ways to implement dynamic first-order masking of AES with randomized look-up tables that can reduce this mask update time. The memory primitives we consider in this work include three distributed RAM components (RAM32M, RAM64M, and RAM256X1S) and one BRAM primitive (RAMB8BWER). We provide a detailed study of the area and time overheads of each implementation technique with respect to the operation (encryption) as well as reconfiguration (mask update) phase. We further compare the achieved security of each technique to prevent first-order side-channel leakages. Our evaluation is based on one of the most general forms of leakage assessment methodology known as non-specific t-test. Practical SCA evaluations (using a Spartan-6 FPGA platform) demonstrate that solely the BRAM primitive but none of the distributed RAM elements can be used to realize an SCA-protected implementation

    Monitoring the response of canine hyperadrenocorticism to trilostane treatment by assessment of acute phase protein concentrations

    Get PDF
    <b>Background</b>: Acute phase proteins (APPS) include haptoglobin (Hp), C-reactive protein (CRP) and serum amyloid A (SAA). Increased Hp concentrations may be induced by endogenous or exogenous glucocorticoids in dogs. <b>Objectives</b>: To assess whether control of hyperadrenocorticism (HAC) affects the concentrations of Hp, CRP, SAA, alkaline phosphatase (ALKP) and cholesterol, to determine whether these analytes can be used to assess control of HAC following trilostane treatment, and whether a combination of these tests offers a valid method of assessing disease control. <b>Methods</b>: Hp, CRP, SAA, ALKP and cholesterol were assessed in 11 dogs with spontaneous HAC before and after treatment with trilostane. Adequate control of HAC was defined as post-ACTH cortisol less than 150 nmol/l. <b>Results</b>: Significant reductions in Hp, ALKP, cholesterol and SAA (P<0·05) but not of CRP were found after control of HAC. Only Hp, cholesterol and ALKP were moderately informative (Se & Sp>0·7) of disease control when compared to adrenocorticotropin or corticotropin (ACTH) stimulation test. SAA and CRP were unhelpful (Se & Sp<0·7). The analysis of the combination of the analytes did not improve the correlation with ACTH stimulation test. <b>Clinical Relevance</b>: Relying on these analytes does not provide additional information over ACTH stimulation test results when assessing control of HAC treated with trilostane

    Multimodal Stimulation of Colorado Potato Beetle Reveals Modulation of Pheromone Response by Yellow Light

    Get PDF
    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms

    Effects of multiple stressors on cyanobacteria abundance vary with lake type

    Get PDF
    Blooms of cyanobacteria are a current threat to global water security that is expected to increase in the future because of increasing nutrient enrichment, increasing temperature and extreme precipitation in combination with prolonged drought. However, the responses to multiple stressors, such as those above, are often complex and there is contradictory evidence as to how they may interact. Here we used broad scale data from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature and water retention time in different types of lakes. Eight lake types were examined based on factorial combinations of major factors that determine phytoplankton composition and sensitivity to nutrients: alkalinity (low and medium‐high), colour (clear and humic) and mixing intensity (polymictic and stratified). In line with expectations, cyanobacteria increased with temperature and retention time in five of the eight lake types. Temperature effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently not at risk could be affected by warming in the future. However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied among lake types highlighting the complex responses of lakes to multiple stressors. For example, in polymictic, medium‐high alkalinity, humic lakes cyanobacteria biovolume was positively explained by retention time and a synergy between TP and temperature while in polymictic, medium‐high alkalinity, clear lakes only retention time was identified as an explanatory variable. These results show that, although climate change will need to be accounted for when managing the risk of cyanobacteria in lakes, a ‘one‐size fits‐all’ approach is not appropriate. When forecasting the response of cyanobacteria to future environmental change, including changes caused by climate and local management, it will be important to take this differential sensitivity of lakes into account

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
    corecore