21 research outputs found

    Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review

    Get PDF
    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments

    Hybrid SPECT/CT for the assessment of a painful hip after uncemented total hip arthroplasty

    Get PDF
    Background The diagnosis of hip pain after total hip replacement (THR) represents a highly challenging question that is of increasing concern to orthopedic surgeons. This retrospective study assesses bone scintigraphy with Hybrid SPECT/CT for the diagnosis of painful THR in a selected cohort of patients. Methods Bone SPECT/CT datasets of 23 patients (mean age 68.9 years) with a painful hip after THR were evaluated. Selection of the patients required an inconclusive radiograph, normal serum levels of inflammatory parameters (CRP and ESR) or a negative aspiration of the hip joint prior to the examination. The standard of reference was established by an interdisciplinary adjudication-panel using all imaging data and clinical follow-up data (>12 month). Pathological and physiological uptake patterns were defined and applied. Results The cause of pain in this study group could be determined in 18 out of 23 cases. Reasons were aseptic loosening (n = 5), spine-related (n = 5), heterotopic ossification (n = 5), neuronal (n = 1), septic loosening (n = 1) and periprosthetic stress fracture (n = 1). In (n = 5) cases the cause of hip pain could not be identified. SPECT/CT imaging correctly identified the cause of pain in (n = 13) cases, in which the integrated CT-information led to the correct diagnosis in (n = 4) cases, mainly through superior anatomic correlation. Loosening was correctly assessed in all cases with a definite diagnosis. Conclusions SPECT/CT of THA reliably detects or rules out loosening and provides valuable information about heterotopic ossifications. Furthermore differential diagnoses may be detected with a whole-body scan and mechanical or osseous failure is covered by CT- imaging. SPECT/CT holds great potential for imaging-based assessment of painful prostheses

    Bacterial genomic G + C composition-eliciting environmental adaptation

    Get PDF
    Bacterial genomes reflect their adaptation strategies through nucleotide usage trends found in their chromosome composition. Bacteria, unlike eukaryotes contain a wide range of genomic G + C. This wide variability may be viewed as a response to environmental adaptation. Two overarching trends are observed across bacterial genomes, the first, correlates genomic G + C to environmental niches and lifestyle, while the other utilizees intra-genomic G + C incongruence to delineate horizontally transferred material. In this review, we focus on the influence of several properties including biochemical, genetic flows, selection biases, and the biochemical-energetic properties shaping genome composition. Outcomes indicate a trend toward high G + C and larger genomes in free-living organisms, as a result of more complex and varied environments (higher chance for horizontal gene transfer). Conversely, nutrient limiting and nutrient poor environments dictate smaller genomes of low GC in attempts to conserve replication expense. Varied processes including translesion repair mechanisms, phage insertion and cytosine degradation has been shown to introduce higher AT in genomic sequences. We conclude the review with an analysis of current bioinformatics tools seeking to elicit compositional variances and highlight the practical implications when using such techniques

    Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels

    Get PDF
    Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRG

    Survival of Escherichia coli in the environment: fundamental and public health aspects

    Get PDF
    In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism's survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health. The ISME Journal (2011) 5, 173-183; doi:10.1038/ismej.2010.80; published online 24 June 2010NATO [ESP.EAP.CLG 981785]; The Soil Biotechnology Foundationinfo:eu-repo/semantics/publishedVersio

    Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011

    Get PDF
    Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.status: publishe

    High-Density Transcriptional Initiation Signals Underline Genomic Islands in Bacteria

    Get PDF
    Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of “alien” elements which probably undergo special temporal–spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these “exotic” regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased “non-optimal” codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for “alien” regions, but also provide hints to the special evolutionary course and transcriptional regulation of GI regions

    The Use of Iloprost in the Treatment of Bone Marrow Edema Syndrome of the Proximal Femur: A Review and Meta-Analysis

    Get PDF
    Objective: The aim of this meta-analysis was to investigate the impact of intravenous iloprost therapy on pain, function, edema changes, and follow-up surgery in bone marrow edema syndrome of the proximal femur. Methods: A systematic literature search up to May 2022 was performed to find relevant papers that made a statement about the outcome of intravenous iloprost therapy alone. Factors such as the Visual Analog Scale (VAS), Harris Hip Score (HHS), edema reduction, and follow-up interventions were considered. These were compared using Forest plots. Results: In 11 studies, 190 proximal femora with bone marrow edema syndrome that received intravenous iloprost therapy without further therapeutic intravenous or surgical intervention such as core decompression were studied. There was a significant mean improvement in VAS by 3.3 cm (2.07&ndash;4.5 cm) (p &lt; 0.001) and HHS by 24.36 points (18.23&ndash;30.49) (p &lt; 0.001) 3&ndash;6 months after receiving iloprost therapy. Only in 9.3% of cases (1.1&ndash;24.3%) did no clinical or radiological improvement occur. Conclusions: It could be shown that the existing publications support intravenous therapy with iloprost in patients with bone marrow edema syndrome and result in good clinical outcomes
    corecore