1,882 research outputs found

    Stability-mediated epistasis constrains the evolution of an influenza protein.

    Get PDF
    John Maynard Smith compared protein evolution to the game where one word is converted into another a single letter at a time, with the constraint that all intermediates are words: WORD→WORE→GORE→GONE→GENE. In this analogy, epistasis constrains evolution, with some mutations tolerated only after the occurrence of others. To test whether epistasis similarly constrains actual protein evolution, we created all intermediates along a 39-mutation evolutionary trajectory of influenza nucleoprotein, and also introduced each mutation individually into the parent. Several mutations were deleterious to the parent despite becoming fixed during evolution without negative impact. These mutations were destabilizing, and were preceded or accompanied by stabilizing mutations that alleviated their adverse effects. The constrained mutations occurred at sites enriched in T-cell epitopes, suggesting they promote viral immune escape. Our results paint a coherent portrait of epistasis during nucleoprotein evolution, with stabilizing mutations permitting otherwise inaccessible destabilizing mutations which are sometimes of adaptive value. DOI:http://dx.doi.org/10.7554/eLife.00631.001

    Sex, lies and self-reported counts: Bayesian mixture models for heaping in longitudinal count data via birth-death processes

    Full text link
    Surveys often ask respondents to report nonnegative counts, but respondents may misremember or round to a nearby multiple of 5 or 10. This phenomenon is called heaping, and the error inherent in heaped self-reported numbers can bias estimation. Heaped data may be collected cross-sectionally or longitudinally and there may be covariates that complicate the inferential task. Heaping is a well-known issue in many survey settings, and inference for heaped data is an important statistical problem. We propose a novel reporting distribution whose underlying parameters are readily interpretable as rates of misremembering and rounding. The process accommodates a variety of heaping grids and allows for quasi-heaping to values nearly but not equal to heaping multiples. We present a Bayesian hierarchical model for longitudinal samples with covariates to infer both the unobserved true distribution of counts and the parameters that control the heaping process. Finally, we apply our methods to longitudinal self-reported counts of sex partners in a study of high-risk behavior in HIV-positive youth.Comment: Published at http://dx.doi.org/10.1214/15-AOAS809 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore