52 research outputs found

    A single synonymous mutation determines the phosphorylation and stability of the nascent protein

    Get PDF
    p53 is an intrinsically disordered protein with a large number of post-translational modifications and interacting partners. The hierarchical order and subcellular location of these events are still poorly understood. The activation of p53 during the DNA damage response (DDR) requires a switch in the activity of the E3 ubiquitin ligase MDM2 from a negative to a positive regulator of p53. This is mediated by the ATM kinase that regulates the binding of MDM2 to the p53 mRNA facilitating an increase in p53 synthesis. Here we show that the binding of MDM2 to the p53 mRNA brings ATM to the p53 polysome where it phosphorylates the nascent p53 at serine 15 and prevents MDM2-mediated degradation of p53. A single synonymous mutation in p53 codon 22 (L22L) prevents the phosphorylation of the nascent p53 protein and the stabilization of p53 following genotoxic stress. The ATM trafficking from the nucleus to the p53 polysome is mediated by MDM2, which requires its interaction with the ribosomal proteins RPL5 and RPL11. These results show how the ATM kinase phosphorylates the p53 protein while it is being synthesized and offer a novel mechanism whereby a single synonymous mutation controls the stability and activity of the encoded protein

    Perturbation of the Dimer Interface of Triosephosphate Isomerase and its Effect on Trypanosoma cruzi

    Get PDF
    Most of the enzymes of parasites have their counterpart in the host. Throughout evolution, the three-dimensional architecture of enzymes and their catalytic sites are highly conserved. Thus, identifying molecules that act exclusively on the active sites of the enzymes from parasites is a difficult task. However, it is documented that the majority of enzymes consist of various subunits, and that conservation in the interface of the subunits is lower than in the catalytic site. Indeed, we found that there are significant differences in the interface between the two subunits of triosephosphate isomerase from Homo sapiens and Trypanosoma cruzi (TcTIM), which causes Chagas disease in the American continent. In the search for agents that specifically inhibit TcTIM, we found that 2,2′-dithioaniline (DTDA) is far more effective in inactivating TcTIM than the human enzyme, and that its detrimental effect is due to perturbation of the dimer interface. Remarkably, DTDA prevented the growth of Escherichia coli cells that had TcTIM instead of their own TIM and killed T. cruzi epimastigotes in culture. Thus, this study highlights a new approach base of targeting molecular interfaces of dimers

    The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo

    Get PDF
    Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections

    Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance

    Get PDF
    BACKGROUND:In recent years, an idiosyncratic new class of bacterial enzymes, named BY-kinases, has been shown to catalyze protein-tyrosine phosphorylation. These enzymes share no structural and functional similarities with their eukaryotic counterparts and, to date, only few substrates of BY-kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. METHODOLOGY/PRINCIPAL FINDINGS:Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc and Etk. The regulatory role of Tyr71 phosphorylation on Ugd activity was then assessed and Tyr71 mutation was found to prevent Ugd activation by phosphorylation. Further, Ugd phosphorylation by Wzc or Etk was shown to serve distinct physiological purposes. Phosphorylation of Ugd by Wzc was found to participate in the regulation of the amount of the exopolysaccharide colanic acid, whereas Etk-mediated Ugd phosphorylation appeared to participate in the resistance of E. coli to the antibiotic polymyxin. CONCLUSIONS/SIGNIFICANCE:Ugd phosphorylation seems to be at the junction between two distinct biosynthetic pathways, illustrating the regulatory potential of tyrosine phosphorylation in bacterial physiology

    A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information

    Full text link

    Search for lepton-flavour-violating decays of the Higgs and Z bosons with the ATLAS detector

    Get PDF
    Direct searches for lepton flavour violation in decays of the Higgs and Z bosons with the ATLAS detector at the LHC are presented. The following three decays are considered: H→eτ, H→μτ, and Z→μτ. The searches are based on the data sample of proton–proton collisions collected by the ATLAS detector corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s√=8 TeV. No significant excess is observed, and upper limits on the lepton-flavour-violating branching ratios are set at the 95 % confidence level: Br (H→eτ)<1.04%, Br (H→μτ)<1.43%, and Br (Z→μτ)<1.69×10−5

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    Get PDF
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 10^{3.3}–10^{5.5} rad m^{−2}), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 10^{5} rad m^{−2} at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 10^{5} rad m^{−2} at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 10^{5} rad m^{−2} at 3 mm and −4.1 to 1.5 × 10^{5} rad m^{−2} at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA

    Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production

    Get PDF
    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both Gram-negative and –positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae¸ which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzydependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.Alistair J. Standish, Angela A. Salim, Hua Zhang, Robert J. Capon and Renato Moron

    First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration

    Get PDF
    We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    Get PDF
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the lambda 3 mm and lambda 1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM > 10(3.3)-10(5.5) rad m(-2)), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (-4.2 0.3) x 10(5) rad m(-2) at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) x 10(5) rad m(-2) at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 x 10(5) rad m(-2) at 3 mm and -4.1 to 1.5 x 10(5) rad m(-2) at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA
    corecore