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Abstract

Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus
pneumoniae. The biosynthesis of Wzy-dependent capsules in both Gram-negative and –positive bacteria is regulated by a
system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is
still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93
serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the
phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E,
inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria.
This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of
Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line,
suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the
phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein
tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniaȩ which contains a homologous phosphatase,
resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-
dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for
the development of anti-virulence antibacterials.
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Introduction

Capsule polysaccharides (CPS) are fundamental virulence

factors for a wide range of Gram-negative (e.g. Klebsiella pneumoniae

and Escherichia coli) and Gram-positive (e.g. Streptococcus pneumoniae

and Staphylococcus aureus) bacterial pathogens. Much work has been

undertaken to investigate the regulation and mechanism of

synthesis of this critical component of the cell, with our primary

focus understanding the mechanism of regulation of the Wzy-

dependent CPS of Streptococcus pneumoniae

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].

Streptococcus pneumoniae, commonly known as the pneumococcus,

is a major human pathogen responsible for significant morbidity

and mortality worldwide [16]. Both management and prevention

of pneumococcal disease is becoming ever more difficult due to

elevated rates of antibiotic resistance and increasing evidence of

serotype switching and vaccine evasion to the current vaccine [17].

The additional lack of antibiotics in the development pipeline,

makes the search for novel treatments of utmost importance [18].

The CPS is widely accepted as the major virulence factor of the

pneumococcus, due to its ability to act as an anti-phagocytic factor

[19], and is the target of currently used vaccines. To date, 93

different serotypes have been discovered [20], which makes

coverage by the current vaccine severely limited, with protection

provided against only 7 or 13 serotypes. Unencapsulated

pneumococci are essentially avirulent and are unable to cause

invasive pneumococcal disease, with mutations in CPS synthesis

causing significant loss of virulence in animal models [6,21,22].

Biosynthesis of CPS in all but two pneumococcal serotypes

occurs by a Wzy-dependent polymerization pathway, analogous to

Group 1 CPS biosynthesis in E. coli and O-antigen assembly in

Gram-negative bacteria [23]. The CPS biosynthesis loci of S.

pneumoniae encode four genes (cpsA-D also known as wzg, wzh, wzd

& wze) found at the 59 end of the loci, which are involved in the

regulation of CPS biosynthesis in the pneumococcus. Genes

similar to these are found in the CPS loci of many other Gram-

positive bacteria [24,25,26,27]. While cpsA mutants produce

significantly less CPS, the cpsA gene product is not essential for

CPS production and is thought to function as a translational

activator [28,29]. cpsC encodes a PCP2b (polysaccharide co-

polymerase) protein [30], and cpsD encodes an autophosphorylat-

ing protein-tyrosine kinase (PTK) [28]. CpsC- and CpsD-related

proteins are found in both Gram-positive and Gram-negative

bacteria [28,31,32]; in the latter they are fused into one protein

(called a PCP2a protein) such as ExoP from Sinorhizobium meliloti

[33] and Wzc from E. coli K-12 and K30 [11] (For recent reviews

on PCPs see [32,34,35] ).

CpsB is metal-dependent protein tyrosine phosphatase (PTP)

that is completely unrelated to any PTPs in eukaryotes, with

homologues only found in other Gram-positive bacteria [7].
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Interestingly, strains constructed with mutations in cpsB have

produced different results, with some studies reporting lower levels

of CPS [6,7,21], where others see an increase [8]. This has led to

confusion about the role of the phosphorylation of CpsD and

whether there is a positive or negative correlation of CpsD-P with

CPS synthesis. Our hypothesis is that when CpsD is phosphor-

ylated synthesis of CPS is enabled, whereas when de-phosphor-

ylated by CpsB, the CPS is attached to the cell wall [6]. If correct

this hypothesis would mean that mutants in both cpsB and cpsD

would exhibit significantly lower levels of CPS, as either synthesis

or attachment would be hindered. While there has been some

discrepancy as to the affect defined mutations in cpsB have on

CPS, all studies to date have shown that cpsB mutants are

essentially avirulent in numerous animal models of infection

[6,8,21]. Thus, CpsB represent a novel target for the development

of anti-virulence drugs against S. pneumoniae and other Gram-

positive pathogens.

Gram-negative bacteria such as E. coli [4], and Klebsiella

pneumoniae [36] also possess PTPs that regulate CPS and

exopolysaccharide biosynthesis. However, the representative

PTP, Wzb, is not homologous to CpsB, but rather belongs to

the family of low molecular weight protein tyrosine phosphatases

[10,37]. In E. coli K-12 and K30, deletion of the gene encoding

Wzb results in no synthesis of colanic acid [1] (an exopolysacchar-

ide produced by all E. coli isolates under stress conditions) and CPS

[12], respectively. In other words, this PTP is thought to be

essential for Gram-negative CPS synthesis.

The aim of this study was to identify chemical inhibitors of

CpsB. To do so, we developed a screen in order to identify

inhibitors of CpsB phosphatase activity. Using this assay, we

discovered a compound (fascioquinol E; FQE) that could inhibit

CpsB phosphatase activity both in vitro and in vivo. This inhibition

consequently resulted in lower levels of CPS, and increased

attachment of S. pneumoniae to a macrophage cell line. Further-

more, FQE also inhibited the E. coli PTP Wzb, and resulted in

lower levels of CPS synthesis in K. pneumoniae. This suggests that

the phosphatase activity of the PTPs CpsB and Wzb are essential

for CPS production in S. pneumoniae D39 and Type 1 strains, and

K. pneumoniae K1, respectively. FQE represents an attractive first

step in the search for lead compounds that could be developed into

‘‘anti-virulence drugs’’, which rather than targeting essential

bacterial processes, target important virulence factors limiting

the infectivity of the pathogen [38].

Results

Screening a Marine Extract Library for Inhibitors of CpsB
Dephosphorylation of p-Nitrophenyl Phosphate

We utilised the ability of CpsB to catalyse the dephosphor-

ylation of p-nitrophenyl phosphate (pNPP) to develop an assay

suitable for high throughput screening [7]. The reaction was

linear, inhibited by broad phosphatase inhibitor sodium

orthovanadate, and was dependent on MnCl2, while a mutated

form of CpsB based on previous studies (CpsBH5H7) produced

approximately 5% activity (data not shown) [39]. The assay

produced a Z factor of .0.7, suggesting it was highly suitable

for high throughput screening of inhibitors. Having optimised

the CpsB assay, we used it to screen a Marine Extract Library

comprising 2784 extracts derived from southern Australian and

Antarctic marine invertebrates and algae. Each extract was

screened in duplicate (see Figure 1) with high reproducibility

revealing 17 extracts (0.6% hit rate) displaying greater than

30% inhibition of CpsB. In a proof-of-concept study we

evaluated the CpsB inhibitory activity of a series of novel

meroterpenes that had recently been isolated and reported from

one of these priority extracts, generated from a deep-water

southern Australian marine sponge Fasciospongia sp. (CMB-

02028) [40].

Fascioquinol E as a CpsB Inhibitor
In a prior 2011 investigation into the secondary metabolites

produced by Fasciospongia sp. (CMB-02028), Zhang et al. [40]

described six novel metabolites, fascioquinols A-F. On screening

pure samples of fascioquinols A-F we established that fascioquinol

E (FQE) was the dominant inhibitor of CpsB dephosphorylation of

pNPP with an IC50 of 5.21 mM (Figure 2A & 2B).

In the 2011 report, FQE was noted as a modest Gram positive

antibacterial (IC50 < 3–5 mM) that was not cytotoxic against

human gastric (AG) and colorectal (HT-29) adenocarcinoma,

neuroblastoma (SH-Sy5Y) and human foreskin fibroblast (HFF-1)

cell lines (IC50.30 mM) [40]. When we tested FQE antibiotic

activity against S. pneumoniae, it inhibited the growth of D39 with

an MIC (MIC = 3 mM) similar to that seen against other Gram-

positive bacteria [40]. In order to determine if inhibition of CpsB

activity was resulting in cell death, we also tested FQE against a

D39 cpsB mutant. FQE also inhibited growth of this strain

(MIC = 3 mM) with the same MIC, suggesting that inhibition of

CpsB was not essential for its antibacterial effects. Controls with

solvent alone showed no bactericidal activity.

In order to exclude that FQE was simply chelating manganese

from the buffer (albeit unlikely as 1 mM Mn2+ was used), we

performed the CpsB inhibitory assays with increasing concentra-

tions of the inactive CpsBH5H7 protein while CpsB WT was

incubated with FQE (10 mM). With increasing concentrations of

CpsBH5H7, pNPP dephosphorylation by CpsB WT significantly

increased, resulting in much less inhibition by FQE (Figure 2C).

Thus, increasing concentrations of CpsBH5H7 competed away the

inhibitory effects of FQE, suggesting that inhibition by FQE is

competitive and that FQE inhibits the phosphatase by directly

binding to CpsB.

Figure 1. Screening of Marine Extract Library for inhibitors of
CpsB activity. The ability of extracts to inhibit His6CpsB dephosphor-
ylation of pNPP in 1 M Tris pH 8.0 with 1 mM MnCl2 was investigated in
96 well trays at 37uC. Shown is a plot of the two screening replicates
reported as % phosphatase activity relative to the average of particular
screening plate. The star represents the extract which produced the
pure compound of interest.
doi:10.1371/journal.pone.0036312.g001

CpsB and Wzb Are Essential for Capsule Synthesis
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In vivo Effect of FQE on CpsD Tyrosine
Autophosphorylation

While FQE inhibited the phosphatase activity of CpsB in vitro,

we were interested to see if this would also inhibit activity in vivo.

Thus, we grew D39 S. pneumoniae to mid log phase (OD600 < 0.35)

and addedFQE. A time course experiment showed that FQE had

some effect on D39 CFU at 5 mM (although it did not reach

statistical significance), but at 2.5 mM and below showed no

growth inhibition (Figure 3A). As a read out of phosphatase

activity of CpsB, we determined levels of CpsD-P in whole cell

lysates made after one hour incubation with FQE, using Western

immunoblot probing with anti-CpsD [28] and anti-phosphotyr-

osine. When grown in the presence of FQE, CpsD levels remained

at similar levels to the untreated control (Figure 3B). However, the

levels of CpsD-P increased by approximately 3 and 2 fold

(Figure 3B & C) when incubated with 5 and 2.5 mM FQE,

respectively. Thus, even when there was no impact on growth,

FQE inhibited CpsB activity. This increase did not appear to be as

much as seen in an otherwise isogenic D39cpsBD mutant

(Figure 3D) [28], likely due to the residual activity of CpsB.

However, this illustrated that FQE was able to inhibit CpsB

phosphatase activity both in vitro and in vivo.

In vivo Effect of FQE on Capsule Size
With FQE affecting the tyrosine phosphorylation of CpsD, we

wanted to see if this resulted in a subsequent reduction in CPS.

The first method utilized was the colorimetric uronic acid assay

[41], as glucuronic acid is a component of the Type 2 repeat unit

[20]. This assay showed that CPS synthesis was reduced by

approximately 47% with 5 mM and 28% with 2.5 mM FQE

(Figure 4A). When incubated with 1.25 mM FQE, uronic acid

levels did not decrease. Additionally, CPS preparations were

separated on SDS-PAGE, transferred to nylon and probed with a

polycolonal antibody against Type 2 CPS. This showed similar

results to those seen with the uronic acid assay, with reduction of

CPS levels at 5 and 2.5 mM, but no effect at 1.25 mM (Figure 4B).

Control strains D39cpsBCDD and D39cpsBD showed reductions as

previously reported [21].

We also tested FQE against a S. pneumoniae serotype 1 invasive

clinical isolate. Serotype 1 possesses galacturonic acid in its CPS,

allowing us to measure FQE mediated affect on CPS by the uronic

acid assay again. Incubation with 5 and 2.5 mM FQE resulted in

38% 69.6 and 30% 618 reductions in uronic acid respectively

(n = 4). Thus, this data suggested that FQE mediated inhibition of

CpsB phosphatase activity resulted in lower levels of CPS synthesis

in S. pneumoniae.

FQE Treatment Increases Attachment of Pneumococci to
Macrophages

The CPS of S. pneumoniae is primarily thought to be critical

through its ability to act as an anti-phagocytic factor [19].

Additionally, unencapsulated pneumococci show increased adher-

ence to a variety of cell types [6]. Thus, we sought to investigate

whether FQE could affect the ability of pneumococci to associate

with the murine macrophage cell line, RAW 264.7. D39 was

incubated with 5, 2.5 and 1.25 mM FQE for 1 h as described

above, and association with the macrophage cell line was

determined as outlined in the methods. Concentrations of FQE

(5 and 2.5 mM) that inhibited CPS production (Figure 4A) also

significantly increased the association of D39 with RAW 264.7

cells (5 mM – P,0.01; 2.5 mM – P,0.05) (Figure 5). This was

comparable with the increased association seen with an otherwise

isogenic D39cpsBD mutant.

FQE also Inhibits Wzb and Gram-negative Capsule
Synthesis

As previous data had shown that CpsB was able to act on the

Gram-negative PTK Wzc [10], this suggested that CpsB and the

PTP from E. coli, Wzb, showed significant similarity in their active

sites [10]. Thus, we investigated if FQE could also inhibit Wzb’s

ability to catalyze dephosphorylation of pNPP. Interestingly, FQE

inhibited the activity of purified Wzb with a similar IC50 as CpsB

(Figure 6A), suggesting that FQE may also be able to inhibit CPS

production in Gram-negative bacterial pathogens.

Klebsiella pneumoniae is a Gram-negative pathogen which causes

primarily nosocomial infections. The pathogen possesses highly

similar homologs to Wzb and Wzc from E. coli [36]. Additionally,

the CPS has been shown to be critical for its ability to cause

invasive disease [42]. Thus, we investigated whether FQE could

Figure 2. FQE inhibits CpsB dephosphorylation of pNPP. (A)
Structure of FQE which (B) inhibited CpsB dephosphorlyation of pNPP
with IC50 = 5.21 mM. (C) CpsB inhibition of pNPP dephosphorylation by
FQE (10 mM) was investigated with increasing concentrations of
CpsBH5H7. Data shown is from three independent experiments (*** -
P,0.001 by Student’s t-test compared to no addition of CpsBH5H7).
doi:10.1371/journal.pone.0036312.g002

CpsB and Wzb Are Essential for Capsule Synthesis
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inhibit CPS production in K. pneumoniae as well as in the

pneumococcus. K. pneumoniae K1 [43] was grown to mid-log phase

(OD600 < 0.4) and then incubated with FQE for 1 h. The uronic

acid colorimetric assay was used to quantify CPS as K1 serotype

CPS possesses glucuronic acid as a component of its CPS [44]. As

FQE does not inhibit the growth of Gram-negative bacteria, we

were able to utilize it at higher concentrations [40]. FQE was also

able to inhibit CPS synthesis in K. pneumoniae, although approx-

imately 5 fold more inhibitor was required (20 mM) (Figure 6B).

The latter was not unexpected, as the presence of the outer

membrane of Gram-negative bacteria confers decreased perme-

ability to very small molecules. Thus, this result indicated that

inhibition of Wzb in Gram-negative bacteria also results in

reduced CPS production.

Discussion

Capsular polysaccharide is a crucial virulence determinant for a

wide range of bacterial pathogens, both Gram-positive and -

negative. Interestingly, its regulation is similar across both genera,

with a PTP and a PTK controlling synthesis of one major class of

CPS. We are particularly interested in the regulation of its

synthesis in the major human pathogen, Streptococcus pneumoniae.

Figure 3. FQE increases CpsD-P in S. pneumoniae D39. S.
pneumoniae D39 were grown to mid log phase in THY (OD600 < 0.35)
and FQE at indicated concentrations were added. (A) These concentra-
tions (mM) had no statistically significant effect on CFU/ml after 30, 60
and 120 mins. (B) Whole cell lysates were prepared from these cells,
which were separated by SDS-PAGE and analyzed by immunoblotting
using anti-CpsD, or anti-phosphotyrosine (to detect CpsD-P). (C)
Densitometric analysis of CpsD-P from three separate experiments.
The effect with addition of 5 mM was significantly higher than
compared with 1.25 mM FQE (* - P,0.05 by Student’s t-test). (D) For
comparison, the effect of an in-frame cpsB deletion mutant on CpsD-P is
shown.
doi:10.1371/journal.pone.0036312.g003

Figure 4. FQE decreases capsule synthesis in S. pneumoniae
D39. Total CPS preparations were isolated from equal numbers of
bacteria after incubation with FQE for 1 h. CPS levels were analysed by
either (A) uronic acid assay or alternatively (B) by separating CPS on
SDS-PAGE, transferring to Nylon and the probing with a-cps2 as
described in the materials and methods. Data in (A) is from $3
independent experiments (5 mM vs 1.25 mM; * - P,0.05 by Student’s t-
test).
doi:10.1371/journal.pone.0036312.g004

CpsB and Wzb Are Essential for Capsule Synthesis
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The study of this system in S. pneumoniae and other bacterial

pathogens has to date been confined to the use of otherwise

isogenic strains containing mutations in the various genes

comprising the regulatory system. However, this is not ideal,

as the regulatory locus is comprised of an operon, with

mutations potentially resulting in subtle unanticipated effects.

Thus, in order to study the system using alternate methods, we

set out to discover inhibitors of the S. pneumoniae PTP, CpsB.

Utilising the ability of CpsB to dephosphorylate pNPP, we

performed a screen of a marine extract library culminating in

the discovery of a novel meroterpene sulphate, FQE, which

inhibited CpsB phosphatase activity with an IC50 of 5.21 mM.

FQE had previously been shown to have antibacterial effects

against Gram-positive but not Gram-negative bacteria [40], but

this activity appeared unrelated to CpsB as it was able to inhibit

the growth of a cpsB mutant.

Using FQE at concentrations where bacterial growth was not

significantly inhibited, we showed that incubation of S. pneumoniae

D39 with FQE resulted in increased levels of CpsD-P, but not

CpsD levels itself. This suggested that FQE penetrates the cell and

inhibits CpsB phosphatase activity, at concentrations that do not

affect growth. Furthermore, we saw a significant decrease in CPS

production when both D39 and a Type 1 strain were incubated

with FQE. This suggested that full activity of the PTP CpsB is

essential for the ability of the pathogen to produce a fully

encapsulated cell. Additionally, at levels which resulted in

decreased levels of CPS synthesis, we saw increased attachment

of D39 to the mouse macrophage cell line, RAW 264.7, similar to

the levels seen with an otherwise isogenic mutant in cpsB.

Attachment to macrophages is crucial for the ability of the host

to clear pneumococcal infection [45], and the CPS is a crucial

factor in this anti-phagocytic ability [19]. Thus, this suggested that

the PTP CpsB is crucial for encapsulation, and the subsequent full

virulence of the pathogen.

Previous studies using deletion knockout mutants have provided

conflicting results as to whether CpsB activity is essential for CPS

synthesis. We have seen in numerous strain backgrounds that

CpsB is required for the full expression of CPS through the use of

cpsB mutants [6,7,21], while Bender et al. (2003) saw a slight

increase in CPS in D39 [8]. Additionally, we showed that deletion

of the phosphorylated tyrosine residues at the C-terminus of CpsD

also resulted in an unencapsulated bacterium [46]. The results

presented here support the conclusion that CpsB function is

critical for complete synthesis of pneumococcal CPS. Interestingly,

a recent study has suggested a novel role for CpsC and CpsD in

the synthesis of CPS at the division septum [47]. This study did not

investigate whether CpsB also plays a similar role, although this

seems unlikely as the C-terminal cluster of tyrosines in CpsD was

not required. Thus, this suggests that there may be multiple

methods of regulation controlling CPS production in the

pneumococcus (septal and non-septal).

FQE also inhibited activity of the PTP from E. coli, Wzb, at

similar levels to that seen for CpsB. While CpsB and Wzb show

no structural similarity, a recent study compared the PTPs and

found that they shared common chemical features, explaining

why CpsB can dephosphorylate Wzc, and, in our case, FQE

can inhibit both PTPs [10]. FQE is not a simple promiscuous

phosphatase inhibitor as it is unable to inhibit another

Figure 5. FQE increases attachment of D39 to macrophages.
D39 was incubated with FQE and then assessed for its ability to
associate with RAW 264.7 cells as described in Materials and Methods.
Data is presented as % association relative to inoculum. D39cpsB? was
used for comparison purposes. Results are from three independent
experiments (** - P,0.01; * - P,0.05 compared to D39 by Student’s t-
test).
doi:10.1371/journal.pone.0036312.g005

Figure 6. FQE also inhibits E. coli Wzb and CPS synthesis in K.
pneumoniae O1. (A) His6Wzb dephosphorylation of pNPP in presence
of FQE in 1 M Tris pH 7.0 at 37uC. (B) Total CPS preparations from K.
pneumoniae incubated with FQE were analysed by uronic acid assay.
Data is from four independent experiments (20 mM vs 5 mM; * - P,0.05
by Student’s t-test:).
doi:10.1371/journal.pone.0036312.g006

CpsB and Wzb Are Essential for Capsule Synthesis
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phosphatase (Shrimp Alkaline Phosphatase) at concentrations up

to 200 mM (data not shown). The inhibition of Wzb prompted

us to investigate whether FQE could also inhibit Gram-negative

CPS synthesis in K. pneumoniae, an important nosocomial human

pathogen that has a PTP homologous to Wzb [36]. Incubation

of K. pneumoniae K1 with FQE resulted in lower levels of CPS

synthesis, suggesting that activity of the PTP in Gram-negative

bacteria is also important for complete CPS synthesis. Further-

more, as FQE had no effect on the growth of Gram-negative

bacteria, this result gives further support to a direct inhibition of

PTP. Other studies have shown that in E. coli expression of

Wzb is critical for CPS expression [12], and that the extent of

phosphorylation of the PTK influences the amount of CPS

produced [11]. Thus, this study provides further credence to

these results and reinforces the importance of Wzb in CPS

biosynthesis.

The small molecule inhibition (FQE) of PTP activity in both

a Gram-positive and -negative pathogen leading to lower levels

of CPS provides strong evidence that these PTPs are suitable

targets for the development of an anti-virulence drug. Such a

class of anti-virulence therapeutics would differ from conven-

tional antibiotics in that they would not inhibit the growth of

the bacteria but would suppress virulence and down-regulate the

intensity and impact of any infection. While it is generally

accepted that anti-virulence antibacterials would invoke less

selective pressure on bacteria, it is important to consider that

the critical nature of CPS in vivo, such as through resistance to

opsonophagocytosis as well as in competition with other

microbes [48], may result in the selection of pneumococci

resistant to drugs such as FQE. However, with the ever

increasing need for novel anti-microbials, we have shown that

the conserved capsule regulatory system appears to be a

promising target. We are currently working on optimizing the

FQE CpsB inhibitory pharmacophore, and investigating the

additional priority hits detected in our screening program, with

a view to discovering and developing more potent inhibitors of

Wzb and CpsB activity.

Materials and Methods

Growth Media and Growth Conditions
S. pneumoniae D39 [49] and type 1 (WCH 4496) [50] were grown

in Todd-Hewitt broth with 1% Bacto yeast extract (THY) and

C+Y [51] respectively, or on blood agar. Agar plates were grown

at 37uC in 5% CO2. Broth cultures were grown at 37uC without

agitation. Escherichia coli strains and K. pneumoniae Kpn1 [43] were

grown in Luria-Bertani broth (10 g/L Tryptone, 5 g/L yeast

extract, 5 g/L NaCl) broth or agar, with transformation carried

out using CaCl2-treated cells. D39cpsBD and D39cpsBCDD were

previously described [6].

Expression and Purification of His6CpsB, His6BH5H7 &
His6Wzb

CpsB from TIGR4 cloned under control of a pBAD promoter

(pWQ553) was transformed into E. coli Lemo21(DE3) [52]. 66
HisCpsB expression was induced by induction for 3 hours 0.1%

(w/v) arabinose. The soluble recombinant protein was purified

using an AKTA prime plus (GE Life Sciences) with a HiTrap

column as described by the manufacturer. The protein was

concentrated using Vivaspin 6 (GE Healthcare). The protein was

stable in 50% (v/v) glycerol. His6CpsBH5H7 was purified using the

same method. His6Wzb was expressed and purified as described

previously [12].

Construction of CpsBH5H7

H5 and H7 of CpsB from pWQ553 were mutated to alanine

using QuikChangeH Site Directed mutagenesis kit (Stratagene)

according to the manufacturer’s instructions. Oligonucleotides

used were AS50 (ATGATAGACATCGCATCGG-

CAATCGTTTTTGATG) and AS51 (CATCAAAAAC-

GATTGCCGATGCGATGTCTATCAT).

p-Nitrophenyl Phosphate Dephosphorylation
His6CpsB catalysis of pNPP (1.5 mM) (Sigma) dephosphoryla-

tion was carried out in 100 ml of 1 M Tris pH 8.0 with 1 mM

MnCl2 in 96 well flat bottom tray (Corning) [7]. Reactions were

incubated at 37uC with A410 recorded every minute on Power-

Wave XS (Biotek). After 10 min, change in absorbance was

calculated. The Z’ was calculated using a previously published

equation [53]. Catalysis using His6Wzb was carried out using the

same method, however buffer was 1 M Tris, pH 7.0 and 100 nM

His6Wzb was used.

Natural Product Extract Partitioning and Fractionation
Marine algae and invertebrate samples were collected from

southern Australian and Antarctic waters between 1984–2002. No

specific permits were required for the described field studies. The

freshly collected samples were frozen (24uC) for shipping to the

laboratory, where they were thawed, catalogued, diced, and

steeped in aqueous ethanol for prolonged storage in 220uC. A

portion of the ethanol extracts were dried by rotary evaporation

(,40uC) and partitioned between n-butanol and water. The n-

butanol extracts were dried and made up to a standard

concentration, and were screened in the CpsB assay by measuring

the inhibition of pNPP dephosphorylation. One active extract,

generated from the Fasciospongia sp. sponge has been studied in

detail [40]. Screening of the pure compounds isolated from

Fasciospongia sp. led to the identification of fascioquinol E (FQE) as

the most active compound.

Western Immunoblotting
Whole cell lysates from equal numbers of cells or CPS

preparations were separated on 12% SDS-PAGE and transferred

to Immobilon-P (Millipore) (anti-Phosphotyrosine, Santa Cruz

Biotechnology catalog no. sc-7020), Nitrobind (GE Water and

Process Technologies) (anti-CpsD [28]) or Hybond-N (Amersha-

m)(anti-Cps2 (Statens Serums Institut)). Membranes were probed

with primary antibody overnight and after washes incubated as

appropriate either with horseradish peroxidase-conjugated goat

anti-rabbit or goat anti-mouse secondary antibodies (Biomediq

DPC) for 2 h. The membrane was then incubated with

chemiluminescence blotting substrate (Sigma) for 5 min. Chemi-

luminescence was detected by Kodak Image Station 4000 MM

Pro.

Uronic Acid Assay
The quantitative uronic acid assay [41] was undertaken for S.

pneumoniae D39 and type 1 as described previously [6] with CPS

preparations from cultures grown in THY and C+Y respectively.

All samples were equilabrated such that CPS was being

determined for equal number of cells from each sample. For K.

pneumoniae, the uronic acid assay and CPS preparations were

undertaken according to the method previously described [54].

Briefly, samples (500 mL) of bacterial cultures were removed and

mixed with 100 mL of 1% Zwittergent 3–14 detergent (Calbio-

chem, Meudon, France) in 100 mM citric acid (pH 2.0). This

mixture was incubated at 50uC for 20 min. After it was
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centrifuged for 5 min at 14,000 rpm, 300 mL of the supernatant

was transferred to a new tube and absolute ethanol was added to a

final concentration of 80%. The mixture was placed at 4uC for

20 min. After centrifugation (14,000 rpm), the supernatant was

decanted and the pellet was dissolved in 200 mL of distilled water.

Cell Association Assay
RAW 264.7 (murine macrophage-like) cells (ATCC; Catalog

number TIB-71) were grown to confluence in a 24 well tissue

culture plate (Nalge Nunc International) (approximately 18 h) at

37uC, 5% CO2. Bacteria grown to mid-log phase at 37uC with

aeration were washed once with PBS and resuspended in RPMI or

DMEM (without supplements) as appropriate. Tissue culture cells

were washed once with fresh media and 500 mL of the appropriate

supplemented media added. 100 mL of undiluted bacterial

suspension was added to each well and a sample retained to

determine the inoculation dose. Plates were centrifuged at 5006g

for 5 min to increase interaction of bacteria and cells and

incubated for 30 min at 37uC, 5% CO2. Wells were washed three

times with fresh media and 100 mL 0.1% (v/v) Triton X-100

added for 10 min at RT to lyse the eukaryote cell membranes.

400 mL PBS was added to the wells and the number of viable

bacteria determined by culturing on selective media. Results were

expressed as mean and standard variation and statistical difference

assessed by unpaired two-tailed student t-test.

Antimicrobial Growth Assay
S. pneumoniae D39 was inoculated into broth and then incubated

with FQE at a range of concentrations in THY at 37uC in a 96

well tray sealed with Breath easy membrane (Sigma) in Powerwave

XS. A600 readings were taken every 20 min for 16 h.
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