55 research outputs found

    Counter-rotation and High-velocity Outflow in the Parsec-scale Molecular Torus of NGC 1068

    Get PDF
    We present 1.4 pc resolution observations of 256 GHz nuclear radio continuum and HCN (J=32J=3 \to 2) in the molecular torus of NGC 1068. The integrated radio continuum emission has a flat spectrum consistent with free-free emission and resolves into an X-shaped structure resembling an edge-brightened bicone. HCN is detected in absorption against the continuum, and the absorption spectrum shows a pronounced blue wing that suggests a high-velocity molecular outflow with speeds reaching 450 km/s. Analysis of the off-nucleus emission line kinematics and morphology reveals two nested, rotating disk components. The inner disk, inside r1.2r\sim 1.2 pc, has kinematics consistent with the nearly edge-on, geometrically thin water megamaser disk in Keplerian rotation around a central mass of 1.66\times 10^7\,\mbox{M}_\odot. The outer disk, which extends to 7\sim 7~pc radius, counter-rotates relative to the inner disk. The rotation curve of the outer disk is consistent with rotation around the same central mass as the megamaser disk but in the opposite sense. The morphology of the molecular gas is asymmetric around the nuclear continuum source. We speculate that the outer disk formed from more recently introduced molecular gas falling out of the host galaxy or from a captured dwarf satellite galaxy. In NGC 1068, we find direct evidence that the molecular torus consists of counter-rotating and misaligned disks on parsec scales.ERC grant 695671 'QUENCH

    HIGH-VELOCITY BIPOLAR MOLECULAR EMISSION from AN AGN TORUS

    Get PDF
    We have detected in ALMA observations CO J = 6 - 5 emission from the nucleus of the Seyfert galaxy NGC 1068. The low-velocity (up to +/- 70 km/s relative to systemic) CO emission resolves into a 12x7 pc structure, roughly aligned with the nuclear radio source. Higher-velocity emission (up to +/- 400 km/s) is consistent with a bipolar outflow in a direction nearly perpendicular (roughly 80 degrees) to the nuclear disk. The position-velocity diagram shows that in addition to the outflow, the velocity field may also contain rotation about the disk axis. These observations provide compelling evidence in support of the disk-wind scenario for the AGN obscuring torus.FONDECYT (Grant ID: 3140436), Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from Institute of Physics Publishing via http://dx.doi.org/10.3847/2041-8205/829/1/L

    Iterative Evolution of Sympatric Seacow (Dugongidae, Sirenia) Assemblages during the Past ∼26 Million Years

    Get PDF
    Extant sirenians show allopatric distributions throughout most of their range. However, their fossil record shows evidence of multispecies communities throughout most of the past ∼26 million years, in different oceanic basins. Morphological differences among co-occurring sirenian taxa suggest that resource partitioning played a role in structuring these communities. We examined body size and ecomorphological differences (e.g., rostral deflection and tusk morphology) among sirenian assemblages from the late Oligocene of Florida, early Miocene of India and early Pliocene of Mexico; each with three species of the family Dugongidae. Although overlapping in several ecomorphological traits, each assemblage showed at least one dominant trait in which coexisting species differed. Fossil sirenian occurrences occasionally are monotypic, but the assemblages analyzed herein show iterative evolution of multispecies communities, a phenomenon unparalleled in extant sirenian ecology. As primary consumers of seagrasses, these communities likely had a strong impact on past seagrass ecology and diversity, although the sparse fossil record of seagrasses limits direct comparisons. Nonetheless, our results provide robust support for previous suggestions that some sirenians in these extinct assemblages served as keystone species, controlling the dominance of climax seagrass species, permitting more taxonomically diverse seagrass beds (and sirenian communities) than many of those observed today

    The Unanticipated Phenomenology of the Blazar PKS 2131-021: A Unique Supermassive Black Hole Binary Candidate

    Get PDF
    Most large galaxies host supermassive black holes in their nuclei and are subject to mergers, which can produce a supermassive black hole binary (SMBHB), and hence periodic signatures due to orbital motion. We report unique periodic radio flux density variations in the blazar PKS 2131-021, which strongly suggest an SMBHB with an orbital separation of similar to 0.001-0.01 pc. Our 45.1 yr radio light curve shows two epochs of strong sinusoidal variation with the same period and phase to within less than or similar to 2% and similar to 10%, respectively, straddling a 20 yr period when this variation was absent. Our simulated light curves accurately reproduce the "red noise" of this object, and Lomb-Scargle, weighted wavelet Z-transform and least-squares sine-wave analyses demonstrate conclusively, at the 4.6 sigma significance level, that the periodicity in this object is not due to random fluctuations in flux density. The observed period translates to 2.082 +/- 0.003 yr in the rest frame at the z = 1.285 redshift of PKS 2131-021. The periodic variation in PKS 2131-021 is remarkably sinusoidal. We present a model in which orbital motion, combined with the strong Doppler boosting of the approaching relativistic jet, produces a sine-wave modulation in the flux density that easily fits the observations. Given the rapidly developing field of gravitational-wave experiments with pulsar timing arrays, closer counterparts to PKS 2131-021 and searches using the techniques we have developed are strongly motivated. These results constitute a compelling demonstration that the phenomenology, not the theory, must provide the lead in this field

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Testing self-similar models of powerful radio sources

    No full text
    We have carried out 2-D axisymmetric numerical simulations of light, supersonic jets. These simulations are used to test the hypothesis of self-similarity for the propagation of jets in powerful radio galaxies. A large range of jet parameters has been explored and we find that the jet flow is not always self-similar. Instead, it undergoes up to three phases which, individually, can be considered to be scale-free although, the jet does not exhibit self-similar behaviour during the transition. The number of phases that a jet goes through and their duration seem to depend upon the initial Mach number

    A NICMOS view of GPS, CSS, and FR II host galaxies

    No full text
    We present the results of HST NICMOS observations of a sample of GPS, CSS, and large scale FIR it radio galaxies. The absolute magnitude, near-IR colors, and surface brightness profiles of the three classes of objects are similar. This is consistent with the scenario in which a powerful radio source evolves along the GPS-CSS-FR II size sequence. Their properties are more like regular (giant) field ellipticals than Brightest Cluster Galaxies (BCG's). This implies GPS/CSS radio sources apparently do not evolve into BCG FR I type sources. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore