12 research outputs found

    The use of blue tit eggs as a biomonitoring tool for organohalogenated pollutants in the European environment

    Get PDF
    In the present study, large scale geographical variation in the occurrence of organohalogenated pollutants (OHPs) was investigated throughout Europe using eggs of a terrestrial resident passerine species, the blue tit (Cyanistes caeruleus). Blue tit eggs from 10 sampling locations, involving suburban, rural and remote areas, in 7 European countries were collected and analysed. Sum polychlorinated biphenyl (PCB) levels ranged from 150 ng/g lipid weight (lw) to 2003 ng/g lw. Sum polybrominated diphenyl ethers (PBDEs) ranged from 3.95 ng/g lw to 114 ng/g lw. As expected, PCB and PBDE concentrations were significantly higher in the sampled suburban locations compared to the rural and remote locations. Sum organochlorine pesticides (OCPs) ranged from 122 ng/g lw to 775 ng/g lw. OCP concentrations were, against the expectations, found to be lower in the rural sampling locations compared to the other locations. Contamination profiles of PCBs, PBDEs and OCPs differed also among the sampling locations, which may be due to local contamination sources. Finally, we compared the results of this study with previously reported OHP concentrations in the eggs of a closely related species, the great tit (Parus major), from the same sampling locations in Europe. We found no differences in concentrations between the species. In addition, we found a significant, positive correlation between the sum PCB concentrations in blue tit eggs and great tit eggs, suggesting similar exposure pathways, mechanisms of accumulation and maternal transfer of PCBs. In conclusion, our results suggest the usefulness of eggs from passerine birds as a biomonitoring tool for OHPs on a large geographical scale.Peer reviewe

    Host dispersal shapes the population structure of a tick-borne bacterial pathogen

    Get PDF
    Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.Peer reviewe

    Comparison of Oropharyngeal Dysphagia in Brazilian Children with Prenatal Exposure to Zika Virus, With and Without Microcephaly.

    Get PDF
    Severe brain damage associated with Zika-related microcephaly (ZRM) have been reported to result in oropharyngeal dysphagia (OPD); however, it is unknown if OPD presents in children with prenatal Zika virus (ZIKV) exposure but only mild or undetectable abnormalities. The aims of this study were: to compare the frequency and characteristics of OPD in children with ZRM and in children without microcephaly born to mothers who tested polymerase chain reaction positive (PCR+) for ZIKV during pregnancy; and to investigate the concordance of caregiver reports of OPD with the diagnosis from the clinical swallowing assessment (CSA). Between Mar/2017 and May/2018, we evaluated 116 children (n = 58 with microcephaly, n = 58 children without microcephaly born to ZIKV PCR + mothers) participating in the Microcephaly Epidemic Research Group (MERG) cohort of children born during the 2015-2016 ZIKV epidemic in Pernambuco, Brazil. To assess OPD we used: a CSA; a clinical assessment of the stomatognathic system; and a questionnaire administered to caregivers. The frequency of OPD was markedly higher in children with ZRM (79.3%) than in the exposed but normocephalic group (8.6%). The children with microcephaly also presented more frequently with anatomic and functional abnormalities in the stomatognathic system. There was a high degree of agreement between the caregiver reports of OPD and the CSA (κ = 0.92). In conclusion, our findings confirm that OPD is a feature of Congenital Zika Syndrome that primarily occurs in children with microcephaly and provide support for policies in which children are referred for rehabilitation with an OPD diagnosis based on caregiver report

    The great tit HapMap project: a continental‐scale analysis of genomic variation in a songbird

    Get PDF
    A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics

    Data from: Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits

    No full text
    Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales

    Brominated flame retardants and organochlorines in the European environment using great tit eggs as a biomonitoring tool

    No full text
    Large-scale studies are essential to assess the emission patterns and spatial distribution of organohalogenated pollutants (OHPs) in the environment. Bird eggs have several advantages compared to other environmental media which have previously been used to map the distribution of OHPs. In this study, large-scale geographical variation in the occurrence of OHPs, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs), was investigated throughout Europe using eggs of a terrestrial residential passerine species, the great tit (Parus major). Great tit eggs from 22 sampling sites, involving urban, rural and remote areas, in 14 European countries were collected and analysed (5–8 eggs per sampling site). The environmentally most important congeners/compounds of the analysed pollutants were detectable in all sampling locations. For PCBs, PBDEs and OCPs, no clear geographical contamination pattern was found. Sum PCB levels ranged from 143 ng/g lipid weight (lw) to 3660 ng/g lw. As expected, PCB concentrations were significantly higher in the sampled urban compared to the remote locations. However, the urban locations did not show significantly higher concentrations compared to the rural locations. Sum PBDEs ranged from 4.0 ng/g lw to 136 ng/g lw. PBDEs were significantly higher in the urbanized sampling locations compared to the other locations. The significant, positive correlation between PCB and PBDE concentrations suggests similar spatial exposure and/or mechanisms of accumulation. Significantly higher levels of OCPs (sum OCPs ranging from 191 ng/g lw to 7830 ng/g lw) were detected in rural sampling locations. Contamination profiles of PCBs, PBDEs and OCPs differed also among the sampling locations, which may be due to local usage and contamination sources. The higher variance among sampling locations for the PCBs and OCPs, suggests that local contamination sources are more important for the PCBs and OCPs compared to the PBDEs. To our knowledge, this is the first study in which bird eggs were used as a monitoring tool for OHPs on such a large geographical scale.Peer reviewe

    Host dispersal shapes the population structure of a tick-borne bacterial pathogen

    No full text
    Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies “Candidatus Borrelia aligera” was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.This study received financial support from Fundação para a Ciência e a Tecnologia by the strategic program of MARE (MARE ‐ UID/MAR/04292/2013) and the fellowship to Ana Cláudia Norte (SFRH/BPD/108197/2015), and the Portuguese National Institute of Health. Raivo Mänd, Tomi Trilar, Tapio Eeva, Tomas Grim and Dieter Heylen were supported by the Estonian Research Council (research grant # IUT34‐8), the Slovenian Research Agency ‐programme “Communities, relations and communications in the ecosystems” (No. P1‐0255), the Academy of Finland (project 265859), the Internal Grant Agency of Palacky University (PrF_2014_018, PrF_2015_018, PrF_2013_018) and the Marie Sklodowska‐Curie Actions (EU‐Horizon 2020, Individual Global Fellowship, project no 799609), respectively

    Connecting the data landscape of long-term ecological studies : The SPI-Birds data hub

    Get PDF
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database ()-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.Peer reviewe
    corecore