8 research outputs found

    PLS-based soft-sensor to predict ammonium concentration evolution in hollow fibre membrane contactors for nitrogen recovery

    Full text link
    [EN] Hollow fibre membrane contactors (HFMC) have emerged as a promising technology for nitrogen-recovery that can be implemented in wastewater treatment plants (WWTPs) to promote circular economy. In this process, a hydrophobic membrane allows the transference of free-ammonia across the hollow fibres. During its operation, the ammonium concentration decreases, and real-time measurements would be of great value for process monitoring, optimization and control. Ammonium probes exist, but they are expensive and present noticeably maintenance costs. In this work, results from eight N-recovery experiments performed at different pH values using real supernatant of a full-scale anaerobic digester were analysed in terms of the time-evolution profiles of pH and total ammonium nitrogen (TAN). The pH revealed to carry relevant information related to the TAN concentration, as it decreased in the feed solution due to free ammonia stripping. The pH is an inexpensive-to measure process variable that can be routinely acquired in any WWTP. Therefore, a data-driven soft-sensor has been developed. It uses the pH, its derivative, and the pH increments after each reagent dosing as input signals, to estimate the TAN concentration via PLS. An extended PLS-model incorporating interaction terms, quadratic and cubic forms of the three input variables improved the TAN concentration estimation. The developed soft-sensor was able to accurately reproduce the evolution of TAN concentration (in the range 0-1000 mgNH(4)(+)-N/L with R-2 > 0.97 and RMSE < 40 mg/L) during the HFMC process operation, thus making it possible to monitor the process as well as enabling future development of different control and optimization strategies.This research was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO projects CTM2014-54980-C2-1/2-R and CTM2017-86751-C2-1/2-R) with the European Regional Development Fund (ERDF) as well as the Universitat Polite`cnica de Vale`ncia via a pre-doctoral FPI fellowship to Guillermo Noriega.Aguado GarcĂ­a, D.; Noriega-Hevia, G.; Ferrer, J.; Seco, A.; Serralta Sevilla, J. (2022). PLS-based soft-sensor to predict ammonium concentration evolution in hollow fibre membrane contactors for nitrogen recovery. Journal of Water Process Engineering. 47:1-7. https://doi.org/10.1016/j.jwpe.2022.102735174

    Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)

    Get PDF
    [EN] This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD.L-1 , 14.9 mg N.L-1 and 0.5 mg P.L-1 , respectively. Harvested solar energy and carbon dioxide biofixation in the form of microalgae biomass allowed remarkable methane yields (399 STP L CH 4.kg(-1) CODinf ) to be achieved, equivalent to theoretical electricity productions of around 0.52 kWh per m 3 of wastewater entering the WRRF. Furthermore, 26.6% of total nitrogen influent load was recovered as ammonium sulphate, while nitrogen and phosphorus were recovered in the biosolids produced (650 +/- 77 mg N.L-1 and 121.0 +/- 7.2 mg P.L-1).This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), which are gratefully acknowledged. This research was also supported by the Spanish Ministry of Education, Culture and Sport via two pre-doctoral FPU fellowships (FPU14/05082 and FPU15/02595) and by the Spanish Ministry of Economy and Competitiveness via two pre-doctoral FPI fellowships (BES-2015-071884, BES-2015-073403) and one Juan de la Cierva contract (FJCI-2014-21616). The authors would also like to acknowledge the support received from Generalitat Valenciana via two VALithornd post-doctoral grants (APOSTD/2014/049 and APOSTD/2016/104) and via the fellowships APOTI/2016/059 and CPI-16-155, as well as the financial aid received from the European Climate KIC association for the 'MAB 2.0' Project (APIN0057_ 2015-3.6-230_ P066-05) and Universitat Politecnica de Valencia via a pre-doctoral FPI fellowship to the seventh author.Seco Torrecillas, A.; Aparicio AntĂłn, SE.; Gonzalez-Camejo, J.; JimĂ©nez BenĂ­tez, AL.; Mateo-Llosa, O.; Mora-SĂĄnchez, JF.; Noriega-Hevia, G.... (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science & Technology. 78(9):1925-1936. https://doi.org/10.2166/wst.2018.492S19251936789Bair, R. A., Ozcan, O. O., Calabria, J. L., Dick, G. H., & Yeh, D. H. (2015). Feasibility of anaerobic membrane bioreactors (AnMBR) for onsite sanitation and resource recovery (nutrients, energy and water) in urban slums. Water Science and Technology, 72(9), 1543-1551. doi:10.2166/wst.2015.349Barat, R., Serralta, J., Ruano, M. V., JimĂ©nez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004Batstone, D. J., HĂŒlsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2-11. doi:10.1016/j.chemosphere.2014.10.021Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283-1300. doi:10.1016/j.biotechadv.2014.07.008Carrington E.-G. 2001 Evaluation of Sludge Treatments for Pathogen Reduction. http://europa.eu.int/comm/environment/pubs/home.htm.Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439-445. doi:10.1016/j.jbiotec.2007.01.009GimĂ©nez, J. B., Robles, A., Carretero, L., DurĂĄn, F., Ruano, M. V., Gatti, M. N., 
 Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014GimĂ©nez, J. B., MartĂ­, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019GimĂ©nez, J. B., Bouzas, A., Carrere, H., Steyer, J.-P., Ferrer, J., & Seco, A. (2018). Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand. Bioresource Technology, 269, 188-194. doi:10.1016/j.biortech.2018.08.052GonzĂĄlez-Camejo, J., Serna-GarcĂ­a, R., Viruela, A., PachĂ©s, M., DurĂĄn, F., Robles, A., 
 Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126MartĂ­, N., Barat, R., Seco, A., Pastor, L., & Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346. doi:10.1016/j.jenvman.2016.12.074Moosbrugger R. , WentzelM. & EkamaG.1992Simple Titration Procedures to Determine H2CO3 Alkalinity and Short-chain Fatty Acids in Aqueous Solutions Containing Known Concentrations of Ammonium, Phosphate and Sulphide Weak Acid/Bases. Water. Res. Commission, Report, No. TT 57/92.Morales, N., Boehler, M., Buettner, S., Liebi, C., & Siegrist, H. (2013). Recovery of N and P from Urine by Struvite Precipitation Followed by Combined Stripping with Digester Sludge Liquid at Full Scale. Water, 5(3), 1262-1278. doi:10.3390/w5031262Pretel, R., DurĂĄn, F., Robles, A., Ruano, M. V., Ribes, J., Serralta, J., & Ferrer, J. (2015). Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion. Separation and Purification Technology, 156, 132-139. doi:10.1016/j.seppur.2015.09.047Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 166, 45-54. doi:10.1016/j.jenvman.2015.10.004Sharma, B., Sarkar, A., Singh, P., & Singh, R. P. (2017). Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Management, 64, 117-132. doi:10.1016/j.wasman.2017.03.002Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409-416. doi:10.1016/j.biotechadv.2009.03.001Sid, S., Volant, A., Lesage, G., & Heran, M. (2017). Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production. Water Science and Technology, 76(9), 2473-2481. doi:10.2166/wst.2017.423Viruela, A., Murgui, M., GĂłmez-Gil, T., DurĂĄn, F., Robles, Á., Ruano, M. V., 
 Seco, A. (2016). Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 218, 447-454. doi:10.1016/j.biortech.2016.06.11

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant

    Full text link
    [EN] Nitrogen recovery technologies such as the hollow fibre membrane contactor are now being developed. However, an economic analysis is needed prior to their full-scale application in wastewater treatment plants. The aim of this study was to analyse the economic and environmental aspects of scaling-up this method. To achieve it, a full-scale 40,000 m3·dayÂż1-wastewater treatment plant influent flow rate was simulated jointly with a membrane contactor plant to evaluate the minimum costs of optimum operating conditions of membrane contactors (pH, feed flow rate and membrane surface). The optimum conditions for treating 600 m3·dayÂż1 of reject water was found to be 10 pH, 0.08 m3·sÂż1 feed flow rate and 10,580 m2 of membrane surface, obtaining a 4% nitrogen ammonia sulphate solution. The results indicated capital (membrane modules and pumps) and operating costs (reagents and energy) of 0.0095 ₏·mÂż3 and a profit of 0.0090 ₏·mÂż3, including energy savings in terms of aeration and sales of the recovered ammonia sulphate, with the added benefit of reducing CO2-eq by 10.3 tons per day.This research was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO projects CTM2014-54980-C2-1/2-R and CTM2017-86751-C2-1/2-R) with the European Regional Development Fund (ERDF) as well as the Universitat Politecnica de Valencia via a pre-doctoral FPI fellowship to the first author.Noriega Hevia, G.; Serralta Sevilla, J.; Seco Torrecillas, A.; Ferrer, J. (2021). Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant. Separation and Purification Technology. 275:1-7. https://doi.org/10.1016/j.seppur.2021.119128S1727

    Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution

    Full text link
    [EN] A hollow fibre membrane contactor has been applied for nitrogen recovery from anaerobic digestion supernatant at different operating conditions obtaining nitrogen recovery efficiencies over 99 %. A mathematical model able to represent the time evolution of pH and nitrogen concentration during the recovery process is presented in this paper. The developed model accurately reproduced the results obtained in 26 experiments carried out at different pH values (from 9 to 11), temperatures (from 25 to 35 degrees C), membrane surfaces (from 1.2 to 2.4 m(2)) and feed flow rates (from 0.33 x 10(-5) to 5.83 x 10(-5) m(3)/s) predicting the variations in nitrogen recovery rates measured at the different operating conditions evaluated. Furthermore, due to the combination of nitrogen and pH modelling, the model is able to predict the variations in OH-concentration (alkali addition) required to increase and maintain the pH during the process. Thus, this model is a useful tool for process design and optimisation since it can predict nitrogen recovery rates and reagents consumption at different operational conditions such as flow rate, pH, membrane surface and temperature.This research was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO projects CTM2014-54980-C21/2-R and CTM2017-86751-C2-1/2-R) with the European Regional Development Fund (ERDF) as well as the Universitat Politecnica de Valencia via a pre-doctoral FPI fellowship to the first author.Noriega-Hevia, G.; Serralta Sevilla, J.; BorrĂĄs, L.; Seco, A.; Ferrer, J. (2020). Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering. 8(4):1-10. https://doi.org/10.1016/j.jece.2020.103880S11084Razon, L. F. (2013). Life cycle analysis of an alternative to the haber-bosch process: Non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environmental Progress & Sustainable Energy, 33(2), 618-624. doi:10.1002/ep.11817Guo, Z., Sun, Y., Pan, S.-Y., & Chiang, P.-C. (2019). Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. International Journal of Environmental Research and Public Health, 16(7), 1282. doi:10.3390/ijerph16071282Batstone, D. J., HĂŒlsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2-11. doi:10.1016/j.chemosphere.2014.10.021MartĂ­, N., Barat, R., Seco, A., Pastor, L., & Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346. doi:10.1016/j.jenvman.2016.12.074Aguado, D., Barat, R., Bouzas, A., Seco, A., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of The Total Environment, 672, 88-96. doi:10.1016/j.scitotenv.2019.03.485Robles, Á., Aguado, D., Barat, R., BorrĂĄs, L., Bouzas, A., GimĂ©nez, J. B., 
 Seco, A. (2020). New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, 122673. doi:10.1016/j.biortech.2019.122673Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P. A., Tack, F. M. G., & Meers, E. (2016). Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste and Biomass Valorization, 8(1), 21-40. doi:10.1007/s12649-016-9642-xDarestani, M., Haigh, V., Couperthwaite, S. J., Millar, G. J., & Nghiem, L. D. (2017). Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. Journal of Environmental Chemical Engineering, 5(2), 1349-1359. doi:10.1016/j.jece.2017.02.016Daguerre-Martini, S., Vanotti, M. B., Rodriguez-Pastor, M., Rosal, A., & Moral, R. (2018). Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Research, 137, 201-210. doi:10.1016/j.watres.2018.03.013Younas, M., Bocquet, S. D., & Sanchez, J. (2008). Extraction of aroma compounds in a HFMC: Dynamic modelling and simulation. Journal of Membrane Science, 323(2), 386-394. doi:10.1016/j.memsci.2008.06.045Qiu, D., Wu, Z., Huang, S.-M., Ye, W.-B., Chen, X., Luo, J., & Yang, M. (2017). Laminar flow and heat transfer in an internally-cooled hexagonal parallel-plate membrane channel (IHPMC). Applied Thermal Engineering, 124, 767-780. doi:10.1016/j.applthermaleng.2017.06.079Seco, A., Aparicio, S., GonzĂĄlez-Camejo, J., JimĂ©nez-BenĂ­tez, A., Mateo, O., Mora, J. F., 
 Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492Garcia-GonzĂĄlez, M. C., & Vanotti, M. B. (2015). Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH. Waste Management, 38, 455-461. doi:10.1016/j.wasman.2015.01.021Li, H., Wang, W., & Zhang, Y. (2014). Preparation and characterization of high-selectivity hollow fiber composite nanofiltration membrane by two-way coating technique. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41187Wang, Z., Gong, H., Zhang, Y., Liang, P., & Wang, K. (2017). Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process. Chemical Engineering Journal, 316, 1-6. doi:10.1016/j.cej.2017.01.082Wett, B., Nyhuis, G., TakĂĄcs, I., & Murthy, S. (2010). Development of Enhanced Deammonification Selector. Proceedings of the Water Environment Federation, 2010(10), 5917-5926. doi:10.2175/193864710798194139Wickramasinghe, S. R., Semmens, M. J., & Cussler, E. L. (1993). Hollow fiber modules made with hollow fiber fabric. Journal of Membrane Science, 84(1-2), 1-14. doi:10.1016/0376-7388(93)85046-yAshrafizadeh, S. N., & Khorasani, Z. (2010). Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chemical Engineering Journal, 162(1), 242-249. doi:10.1016/j.cej.2010.05.036Tan, X., Tan, S. P., Teo, W. K., & Li, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271(1-2), 59-68. doi:10.1016/j.memsci.2005.06.057Nosratinia, F., Ghadiri, M., & Ghahremani, H. (2014). Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors. Journal of Industrial and Engineering Chemistry, 20(5), 2958-2963. doi:10.1016/j.jiec.2013.10.065Licon, E., Reig, M., Villanova, P., Valderrama, C., Gibert, O., & Cortina, J. L. (2014). Ammonium removal by liquid–liquid membrane contactors in water purification process for hydrogen production. Desalination and Water Treatment, 56(13), 3607-3616. doi:10.1080/19443994.2014.974216Nagy, J., Kaljunen, J., & Toth, A. J. (2019). Nitrogen recovery from wastewater and human urine with hydrophobic gas separation membrane: experiments and modelling. Chemical Papers, 73(8), 1903-1915. doi:10.1007/s11696-019-00740-xMoosbrugger, R. E., Wentzel, M. C., Ekama, G. A., & Marais, G. v. R. (1993). A 5 pH Point Titration Method for Determining the Carbonate and SCFA Weak Acid/Bases in Anaerobic Systems. Water Science and Technology, 28(2), 237-245. doi:10.2166/wst.1993.0112Darestani, M., Haigh, V., Couperthwaite, S. J., Millar, G. J., & Nghiem, L. D. (2017). Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. Journal of Environmental Chemical Engineering, 5(2), 1349-1359. doi:10.1016/j.jece.2017.02.016Serralta, J., Ferrer, J., BorrĂĄs, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009Kartohardjono, S., Iwan Fermi, M., Yuliusman, Y., Elkardiana, K., Putra Sangaji, A., & Maghfirwan Ramadhan, A. (2015). The Removal of Dissolved Ammonia from Wastewater through a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Technology, 6(7), 1146. doi:10.14716/ijtech.v6i7.1845ZHENG, J., DAI, Z., WONG, F., & XU, Z. (2005). Shell side mass transfer in a transverse flow hollow fiber membrane contactor. Journal of Membrane Science, 261(1-2), 114-120. doi:10.1016/j.memsci.2005.02.035Qu, D., Sun, D., Wang, H., & Yun, Y. (2013). Experimental study of ammonia removal from water by modified direct contact membrane distillation. Desalination, 326, 135-140. doi:10.1016/j.desal.2013.07.02

    Astrocytic IGF-IRs induce adenosine-mediated inhibitory downregulation and improve sensory discrimination

    Get PDF
    Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTP) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTP not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.This work was supported by Grants BFU2016-80802-P from Agencia Estatal de InvestigaciĂłn Spain/Fondo Europeo de Desarrollo Regional, and from the European Union [Ministerio de EconomĂ­a y Competitividad (MINECO)] to D.F.d.S.; Grants R01-NS-097312 and R01-DA-048822 from National Institutes of Health/National Institute of Neurological Disorders and Stroke to A.A.; and grants from Centro de InvestigaciĂłn BiomĂ©dica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Grant SAF2016-76462-C2-1-P from MINECO to I.T.-A. J.A.Z.-V. was supported by the National Council of Science, Technology and Technological Innovation (CONCYTEC, PerĂș) through the National Fund for Scientific and Technological Development (FONDECYT, PerĂș). J.F. received a postdoctoral fellowship from Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP; Grants #2017/14742-0 and #2019/03368-5). We thank the University of Minnesota Viral Vector and Cloning Core for production of some of the viral vectors used in this study; and Dr. G. Perea and Dr. Washington Buño for helpful comments

    Effect of a multistage ultraendurance triathlon on aldosterone, vasopressin, extracellular water and urine electrolytes

    Full text link
    Prolonged endurance exercise over several days induces increase in extracellular water (ECW). We aimed to investigate an association between the increase in ECW and the change in aldosterone and vasopressin in a multistage ultraendurance triathlon, the 'World Challenge Deca Iron Triathlon' with 10 Ironman triathlons within 10 days. Before and after each Ironman, body mass, ECW, urinary [Na(+)], urinary [K(+)], urinary specific gravity, urinary osmolality and aldosterone and vasopressin in plasma were measured. The 11 finishers completed the total distance of 38 km swimming, 1800 km cycling and 422 km running within 145.5 (18.8) hours and 25 (22) minutes. ECW increased by 0.9 (1.1) L from 14.6 (1.5) L prerace to 15.5 (1.9) L postrace (P < 0.0001). Aldosterone increased from 70.8 (104.5) pg/mL to 102.6 (104.6) pg/mL (P = 0.033); vasopressin remained unchanged. The increase in ECW was related neither to postrace aldosterone nor to postrace vasopressin. In conclusion, ECW and aldosterone increased after this multistage ultraendurance triathlon, but vasopressin did not. The increase in ECW and the increase in aldosterone were not associated

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore