639 research outputs found

    Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects.</p> <p>Results</p> <p>We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals.</p> <p>Conclusions</p> <p>These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.</p

    Influence of the SLC6A3-DAT1 Gene on Multifaceted Measures of Self-regulation in Preschool Children

    Get PDF
    Development of self-regulation, the capacity to voluntarily modulate thoughts, emotions and actions is strongly related to the maturation of the dopamine-mediated executive attention network (EAN). The attention control processes associated with the EAN greatly overlap with efficiency of the executive functions and are correlated with measures of effortful control. Regulation of dopamine levels within the EAN, particularly in the basal ganglia is carried out by the action of dopamine transporters. In humans, the SLC6A3/DAT1 gene carries out the synthesis of the DAT protein. The 10-repeat allele has been associated with an enhanced expression of the gene and has been related to ADHD symptoms. Little is known about the impact of DAT1 variations on children's capacity to self-regulate in contexts that impose particular demands of regulatory control such as the school or home. This study defines a multi-domain phenotype of self-regulation and examines whether variations of the DAT1 gene accounts for individual differences in performance in 4–5 year old children. Results show that presence of the 10r allele is related to a diminished ability to exert voluntary regulation of reactivity. These findings shed light on the neurobiological mechanisms underlying individual differences in self-regulation during childhood.This project was funded with grants of the Spanish Ministry of Economy and Competitiveness (refs. PSI2011-27746 and PSI2014-55833-P) awarded to MR, as well as a doctoral fellowship awarded to the first author by the General Secretary of Universities, Research and Technology of the Junta of Andalucía (F.P.U. fellowship in the area of psychobiology)

    Effects of hypoxia-ischemia on monoamine metabolism in the immature brain

    Full text link
    We measured acute changes in monoamine metabolites in corpus striatum of immature rat pups exposed to hypoxiaischemia, hypoxia alone, or total global ischemia. Carotid ligations and two hours of 8% oxygen environment in 7-day-old pups led to asymmetrical turning behavior, a 70% decrease in endogenous striatal dopamine levels, and a 125% increase in homovanillic acid (HVA) concentrations on the side of ligation. In contrast, hypoxia alone and total global ischemia alone were not associated with HVA level elevation. Elevation of HVA level with hypoxia-ischemia showed a threshold effect between 1 and 1.5 hours, and this time course paralleled that for production of gross morphological changes in rats raised to maturity. The data suggest that dopamine release from striatal nerve terminals is associated with events causing brain injury during perinatal hypoxia-ischemia. Tissue HVA in the animal model appears to be a quantitative marker for the effects of the insult on a population of nerve terminals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50306/1/410150407_ftp.pd

    Chronic Effects of a Wild Green Oat Extract Supplementation on Cognitive Performance in Older Adults: A Randomised, Double-Blind, Placebo-Controlled, Crossover Trial

    Get PDF
    Background and aim: Preliminary evaluation of a wild green oat extract (WGOE) (Neuravena® ELFA®955, Frutarom, Switzerland) revealed an acute cognitive benefit of supplementation. This study investigated whether regular daily WGOE supplementation would result in sustained cognitive improvements. Method: A 12-week randomised, double-blind, placebo-controlled cross-over trial of WGOE supplementation (1500 mg/day) versus placebo was undertaken in 37 healthy adults aged 67 ± 0.8 years (mean ± SEM). Cognitive assessments included the Stroop colour-word test, letter cancellation, the rule-shift task, a computerised multi-tasking test battery and the trail-making task. All assessments were conducted in Week 12 and repeated in Week 24 whilst subjects were fasted and at least 18 h after taking the last dose of supplement. Result: Chronic WGOE supplementation did not affect any measures of cognition. Conclusion: It appears that the cognitive benefit of acute WGOE supplementation does not persist with chronic treatment in older adults with normal cognition. It remains to be seen whether sustained effects of WGOE supplementation may be more evident in those with mild cognitive impairment

    DRD4 and TH gene polymorphisms are associated with activity, impulsivity and inattention in Siberian Husky dogs

    Get PDF
    Both dopamine receptor D4 (DRD4) exon 3 and tyrosine hydroxylase (TH) intron 4 repeat polymorphisms have been linked to activity and impulsivity in German Shepherd dogs (GSDs). However, the results in GSDs may not be generalisable to other breeds, as allelic frequencies vary markedly among breeds. We selected the Siberian Husky for further study, because it is highly divergent from most dog breeds, including the GSD. The study sample consisted of 145 racing Siberian Huskies from Europe and North America. We found that this breed possesses seven DRD4 length variants, two to five more variants than found in other breeds. Among them was the longest known allele, previously described only in wolves. Short alleles of the DRD4 and TH repeat polymorphisms were associated with higher levels of activity, impulsivity and inattention. Siberian Huskies possessing at least one short allele of the DRD4 polymorphism displayed greater activity in a behavioural test battery than did those with two long alleles. However, the behavioural test was brief and may not have registered variation in behaviour across time and situations. Owners also completed the Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS), a more general measure of activity and attention. Siberian Huskies from Europe with two short alleles of the TH polymorphism received higher ratings of inattention on the Dog-ADHD RS than did those with the long allele. Investigation of the joint effect of DRD4 and TH showed that dogs possessing long alleles at both sites were scored as less active-impulsive than were others. Our results are aligned with previous studies showing that DRD4 and TH polymorphisms are associated with activity-impulsivity related traits in dogs. However, the prevalence of variants of these genes differs across breeds, and the functional role of specific variants is unclear. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics

    How attentional boost interacts with reward: the effect of dopaminergic medications in Parkinson's disease.

    Get PDF
    There is widespread evidence that dopamine is implicated in the regulation of reward and salience. However, it is less known how these processes interact with attention and recognition memory. To explore this question, we used the attentional boost test in patients with Parkinson's disease (PD) before and after the administration of dopaminergic medications. Participants performed a visual letter detection task (remembering rewarded target letters and ignoring distractor letters) while also viewing a series of photos of natural and urban scenes in the background of the letters. The aim of the game was to retrieve the target letter after each trial and to win as much virtual money as possible. The recognition of background scenes was not rewarded. We enrolled 26 drug-naive, newly diagnosed patients with PD and 25 healthy controls who were evaluated at baseline and follow-up. Patients with PD received dopamine agonists (pramipexole, ropinirole, rotigotine) during the 12-week follow-up period. At baseline, we found intact attentional boost in patients with PD: they were able to recognize target-associated scenes similarly to controls. At follow-up, patients with PD outperformed controls for both target- and distractor-associated scenes, but not when scenes were presented without letters. The alerting, orienting and executive components of attention were intact in PD. Enhanced attentional boost was replicated in a smaller group of patients with PD (n = 15) receiving l-3,4-dihydroxyphenylalanine (L-DOPA). These results suggest that dopaminergic medications facilitate attentional boost for background information regardless of whether the central task (letter detection) is rewarded or not

    Association of polymorphisms in HCN4 with mood disorders and obsessive compulsive disorder

    Get PDF
    Hyperpolarization activated cyclic nucleotide-gated (HCN) potassium channels are implicated in the control of neuronal excitability and are expressed widely in the brain. HCN4 is expressed in brain regions relevant to mood and anxiety disorders including specific thalamic nuclei, the basolateral amygdala, and the midbrain dopamine system. We therefore examined the association of HCN4 with a group of mood and anxiety disorders. We genotyped nine tag SNPs in the HCN4 gene using Sequenom iPLEX Gold technology in 285 Caucasian patients with DSM-IV mood disorders and/or obsessive compulsive disorder and 384 Caucasian controls. HCN4 polymorphisms were analyzed using single marker and haplotype-based association methods. Three SNPs showed nominal association in our population (rs12905211, rs3859014, rs498005). SNP rs12905211 maintained significance after Bonferroni correction, with allele T and haplotype CTC overrepresented in cases. These findings suggest HCN4 as a genetic susceptibility factor for mood and anxiety disorders; however, these results will require replication using a larger sample

    Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs

    Get PDF
    We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH) gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1) the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS) filled in by the dog owners and (2) the newly developed Activity-impulsivity Behavioural Scale (AIBS) containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS

    Coordinated Activity of Ventral Tegmental Neurons Adapts to Appetitive and Aversive Learning

    Get PDF
    Our understanding of how value-related information is encoded in the ventral tegmental area (VTA) is based mainly on the responses of individual putative dopamine neurons. In contrast to cortical areas, the nature of coordinated interactions between groups of VTA neurons during motivated behavior is largely unknown. These interactions can strongly affect information processing, highlighting the importance of investigating network level activity. We recorded the activity of multiple single units and local field potentials (LFP) in the VTA during a task in which rats learned to associate novel stimuli with different outcomes. We found that coordinated activity of VTA units with either putative dopamine or GABA waveforms was influenced differently by rewarding versus aversive outcomes. Specifically, after learning, stimuli paired with a rewarding outcome increased the correlation in activity levels between unit pairs whereas stimuli paired with an aversive outcome decreased the correlation. Paired single unit responses also became more redundant after learning. These response patterns flexibly tracked the reversal of contingencies, suggesting that learning is associated with changing correlations and enhanced functional connectivity between VTA neurons. Analysis of LFP recorded simultaneously with unit activity showed an increase in the power of theta oscillations when stimuli predicted reward but not an aversive outcome. With learning, a higher proportion of putative GABA units were phase locked to the theta oscillations than putative dopamine units. These patterns also adapted when task contingencies were changed. Taken together, these data demonstrate that VTA neurons organize flexibly as functional networks to support appetitive and aversive learning

    Murine Cytomegalovirus Infection of Neural Stem Cells Alters Neurogenesis in the Developing Brain

    Get PDF
    Congenital cytomegalovirus (CMV) brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV) and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs) and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi) cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons
    corecore