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Abstract
Hyperpolarization activated cyclic nucleotide-gated (HCN) potassium channels are implicated in
the control of neuronal excitability and are expressed widely in the brain. HCN4 is expressed in
brain regions relevant to mood and anxiety disorders including specific thalamic nuclei, the
basolateral amygdala, and the midbrain dopamine system. We therefore examined the association
of HCN4 with a group of mood and anxiety disorders. We genotyped nine tag SNPs in the HCN4
gene using Sequenom iPLEX Gold technology in 285 Caucasian patients with DSM-IV mood
disorders and/or obsessive compulsive disorder and 384 Caucasian controls. HCN4
polymorphisms were analyzed using single marker and haplotype-based association methods.
Three SNPs showed nominal association in our population (rs12905211, rs3859014, rs498005).
SNP rs12905211 maintained significance after Bonferroni correction, with allele T and haplotype
CTC overrepresented in cases. These findings suggest HCN4 as a genetic susceptibility factor for
mood and anxiety disorders; however, these results will require replication using a larger sample.

Keywords
HCN4 gene; Thalamocortical; Depression; Basolateral Amygdala; Prefrontal cortex; Obsessive-
compulsive disorder

1. Introduction
Psychiatric disorders arise through the interplay of genetic and environmental risk factors
[17]. Mood and anxiety disorders are highly comorbid [2, 7, 25, 49] and show substantial
shared genetic variance based on twin and family studies [11, 23, 24, 31, 36, 51]. Therefore,
there are likely to be genetic risk factors that determine risk for both classes of disorders
jointly.
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Hyperpolarization activated cyclic nucleotide gated (HCN) ion channels are ion channels
that underlie the hyperpolarization-activated current, Ih. HCN channels, coded by HCN 1–4,
are composed of four channel subunits [9] and modulate intrinsic neuronal excitability and
synaptic integration [12, 31–33, 52]. The open probability of these channels is increased by
cyclic adenosine monophosphate (cAMP) [4, 9, 19], making these channels highly
susceptible to regulation by receptors coupled to cAMP. Of the four cloned HCN subunits,
HCN4 is the most sensitive to cAMP [8, 9].

There are numerous reasons to believe that HCN4 may be involved in mood and anxiety
disorders. It has a key role in regulating the functioning of the thalamus, amygdala, mid-
brain dopamine system, and indirectly the prefrontal cortex. HCN4 is highly expressed in
the thalamus, including the paraventricular nucleus (PVT) [38], the ventrobasal complex,
and the reticular thalamic nucleus (RTN) [1]. Lesions in thalamic nuclei induce symptoms
of prefrontal cortical (PFC) dysfunction, including impairment of executive function,
initiative, and attention [52], suggesting the thalamic nuclei and their cortical fields can act
as functional units. Abnormalities in thalamic regions have been described in mood
disorders [10, 22] and OCD [18, 20] based on post-mortem [5, 58] and in vivo anatomical
and functional imaging techniques [14, 15]. Orexin inhibits HCN currents [29] and produces
anxiety-like responses in rats when injected in to the PVT whereas inhibition of orexin
attenuates anxiety [30, 43, 45, 53]. HCN4 channels are highly expressed in the basolateral
amygdala (BLA) [38] and channel block in the BLA causes anxiety [44]. HCN channels also
play important roles in the functional modulation of the midbrain dopamine (DA) system
[12, 37, 41] which has been implicated in depression and other mood disorders [39].

Because HCN4 channels may regulate mood and anxiety by affecting the function of the
thalamus, amygdala, and midbrain DA systems, and may indirectly influence PFC function,
HCN4 is a good candidate gene for mood and anxiety disorders. We therefore examined
HCN4 genotype in patients with several different mood and anxiety disorders, including
MDD, bipolar disorder, and OCD, and tested for association with a compound mood-anxiety
disorder phenotype comprised of these disorders. The positive association findings described
here are consistent with a role for HCN4 in mood and anxiety disorders and motivates future
research into the role of genetically determined prefrontal connectivity in these disorders.

2. Material and Methods
2.1 Subjects

Variation in HCN4 on chromosome 15 was characterized in 285 Caucasian patients (mean
age = 43.4 ± 11.9 years and 35% male) and 354 Caucasian controls (mean age 61.0 ± 17.9
years and 43% male). The patients included in this study met DSM-IV criteria for mood
and/or anxiety disorders as assessed using the Structured Clinical Interview for DSM
Disorders (SCID-RV), and included 43 patients with bipolar disorder, 84 with obsessive-
compulsive disorder, and 174 with major depressive disorder. Among the bipolar subjects,
11 had a co-morbid anxiety disorder, and among the major depressive disorder patients 20
had a co-morbid anxiety disorder. A total of 13 of the obsessive compulsive disorder cases
had co-morbid major depressive disorder. The case phenotype was scored as Present if a
subject was found to have major depression, bipolar I, bipolar II, and/or obsessive-
compulsive disorder. Both healthy controls and patients were recruited via radio
advertisement, study flyers and the internet. Patients and controls were assessed using the
SCID-RV. Controls had no current or past DSM-IV diagnoses apart from possible nicotine
abuse. A standard informed consent was obtained from all subjects. This work was approved
by the Yale University Human Investigation Committee.
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2.2 Genotyping
We selected nine tag SNPs in HCN4 using Haploview software (www.broad.mit.edu/mpg/
haploview/) with the Tag SNP Picker routine and Hapmap data to cover all 38.9 kb of the
HCN4 gene. These SNPs met the criteria of being in Hardy-Weinberg equilibrium in the
HapMap sample (P value ≥ 0.05), an r2 threshold ≥ 0.8 and minimum allele frequency of
≥7.7% based on Hapmap data (http://hapmap.ncbi.nlm.nih.gov/). Additional SNPs were not
included to minimize multiple testing. SNP genotypes were obtained using Sequenom
iPLEX Gold on a Sequenom MassARRAY system maintained by the Yale Keck Center. All
primer sequences are available upon request.

2.3 Statistical Analysis
Analyses were conducted using the SNPassoc, genetics, and haplo.stats packages in ‘R’
(cran.r-project.org). The reported P values correspond to log-additive models. All analyses
included age and sex as covariates. For the analysis of the linkage disequilibrium (LD)
pattern and haplotype block delineation we used Haploview. We corrected P values using
Bonferroni correction for multiple testing as well as using theQ-value package in R (http://
cran.r-project.org/web/packages/qvalue/index.html). We also calculated sample sizes
(samples per group) required for power = 0.8 with alpha = 0.05 based on the observed effect
sizes by simulation in R for the non-significant single marker analyses (rs546564 (n = 9083),
rs548525 (n = 2344), rs8030574 (n = 1451), rs2623997 (n = 662), rs4776632 (n = 619), and
rs3784812 (n = 2966)).

3. Results
All SNPs were in Hardy-Weinberg equilibrium (HWE) in controls. In patients, SNP
rs3859014 was not in HWE and SNP rs12905211 had a P value of borderline significance
(see Table 1), suggesting the possibility that these variants influence disease risk [26]. We
found evidence for nominal association between three SNPs (rs498005, rs3859014 and
rs12905211) and this group of mood and anxiety disorders (P = 0.033, 0.047 and 0.004,
respectively). SNP rs12905211 maintained significance after Bonferroni correction (P =
0.035) with the T allele being more frequent (OR = 1.5; 95% CI = 1.13–1.98; see Table 1) in
cases compared to controls. SNPs rs498005 and rs3859014 did not maintain significance
after Bonferroni correction (P = 0.297 andP = 0.423, respectively). Putative LD blocks were
identified. Block 2, including SNPs rs548525, rs12905211 and rs8030574, had two
significant associated haplotypes, haplotype CTC, with P = 0.004 and GTA,P = 0.02, but
only the former was significant after Bonferroni correction (OR = 2.88; 95% CI = 1.41–
5.90), and haplotype CGT in Block 1 approached significance (see Table 2).

Although power was limited for these analyses we also conducted single marker association
analyses for the individual subgroups. Major depressive disorder was significantly
associated with two SNPs (rs3859014 withP = 0.02 and rs12905212 with P = 0.04; see
Table 3), whereas anxiety disorders (88 OCD cases) approached significance for association
with the SNP rs12905212 (see Table 3).

All analyses included age as a covariate because risk for the phenotype was lower in the
older subjects (p<0.0001) in our sample. All statistically significant results remained
significant when age and sex were not included as covariates.

4. Discussion
In this study, we found an association between rs498005, rs3859014, and rs12905211 in
HCN4 and a group of mood and anxiety disorders; rs12905211 survived Bonferroni
correction. Two of the SNPs (rs3859014 and rs12905211) were also significantly associated
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with the MDD subgroup. It is as yet unclear whether these polymorphisms, which are
intronic, are causal. We suspect that they are in linkage disequilibrium with a causal variant
not included in the study that influences the expression of HCN4 that leads to alterations of
cortical-thalamic circuits, amygdala reactivity, and midbrain dopaminergic transmission, and
potentially impacting on PFC functioning.

As reviewed above, convergent evidence has implicated HCN channels in the modulation of
corticol-subcortical circuitry [27–29, 35, 41, 43, 44, 48, 55, 59] and these circuits are
implicated in both mood and anxiety disorders [16, 46]. Our findings with regard to
association between SNPs in HCN4 and mood and anxiety disorders is consistent with the
known role of HCN4 channels in these circuits, but further research will be required to
directly establish the validity of this proposed mechanism. As noted above, blockade of
HCN channels in the BLA increases anxiety [44]. It is therefore possible that the variants
identified in this study, particularly the T allele of rs12905211, are associated with decreased
HCN4 channel expression compared to the C allele.

Given that HCN4 is most dramatically depolarized by the presence of cAMP, altered
expression of HCN4 could also potentially impair how stress is modulated since several
stress-activated intracellular signaling pathways converge upon cAMP production. It’s been
shown that the activation of HCN channels on PFC pyramidal neurons weakens the
functional connectivity of PFC networks [3, 55]. Studies have also shown that stress, in
animal models of depression, potently activates VTA DA neurons [21, 40, 57], which, in
turn, stimulate their cortical and limbic targets. Chronic exposure to stress has been shown
to cause pathological adaptation in the reward pathway, and this adaptation could contribute
to behavioral abnormalities seen in depression and other mood disorders [39]. Therefore,
HCN4 may play a role in the dysregulated dopaminergic state underlying the emotional and
motivational component of anxiety and mood disorders.

Circadian rhythm misalignment and sleep disturbances are associated with mood disorders
[50]. Light sensitive physiological rhythms are controlled by the suprachiasmatic nuclei
(SCN) in the hypothalamus. The pacemaker centers of the SCN receive inputs from
serotoninergic neurons which regulate the stress response as well as neuroimmunological
functions. Agomelatine is a melatonin receptor agonist and 5-HT2C antagonist with
antidepressant effects and targets the desynchronised circadian rhythm in mood disorders
[42]. M1 cells are the major source of retinal input to SCN [6]. A recent paper has shown
that the Ih current in M1 cells is mainly carried by HCN4 channels [54]. Whether HCN4
channels in M1 cells affect mood is unclear at present. However, M1 cells are tightly
modulated by dopaminergic innervation [47], and HCN4 channel genetic variation could
affect these modulatory influences.

To our knowledge, this is the first reported association between HCN4 and risk for
psychiatric disease. Although this was a small study, the fact that the rs129052111 finding
survived Bonferroni correction is promising. Our findings will require confirmation in a
larger sample. In addition, exploring the ability of HCN4genotype to predict anxiety
disorders other than obsessive compulsive disorder, and examining HCN4genotype in a
larger sample of bipolar patients, will be important in future studies.

5. Conclusion
In conclusion, our results show the first genetic evidence that variation in HCN4 may be a
risk factor for mood and anxiety disorders.
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Highlights

• HCN4 is a strong candidate gene for mood and anxiety disorders.

• We genotyped nine tag SNPs in theHCN4 gene in controls and patients.

• Patients had mood disorders and/or obsessive compulsive disorder.

• Three SNPs showed nominal association in our population (rs12905211,
rs3859014, rs498005).

• SNP rs12905211 maintained significance after Bonferroni correction.
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