10 research outputs found

    Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment

    Get PDF
    Alloy 718 is a nickel-based superalloy that is widely used as a structural material for high-temperature applications. One concern that arises when Alloy 718 is manufactured using powder bed fusion (PBF) is that residual stresses appear due to the high thermal gradients. These residual stresses can be detrimental as they can degrade mechanical properties and distort components. In this work, residual stresses in PBF built Alloy 718, using both electron and laser energy sources, were measured by neutron diffraction. The effects of process parameters and thermal post-treatments were studied. The results show that thermal post-treatments effectively reduce the residual stresses present in the material. Moreover, the material built with laser based PBF showed a higher residual stress compared to the material built with electron-beam based PBF. The scanning strategy with the lower amount of residual stresses in case of laser based PBF was the chessboard strategy compared to the bi-directional raster strategy. In addition, the influence of measured and calculated lattice spacing (d0) on the evaluated residual stresses was investigated

    Residual Lattice Strain and Phase Distribution in Ti 6Al 4V Produced by Electron Beam Melting

    Get PDF
    Residual stress strain and microstructure used in additively manufactured material are strongly dependent on process parameter combination. With the aim to better understand and correlate process parameters used in electron beam melting EBM of Ti 6Al 4V with resulting phase distributions and residual stress strains, extensive experimental work has been performed. A large number of polycrystalline Ti 6Al 4V specimens were produced with different optimized EBM process parameter combinations. These specimens were post sequentially studied by using high energy X ray and neutron diffraction. In addition, visible light microscopy, scanning electron microscopy SEM and electron backscattered diffraction EBSD studies were performed and linked to the other findings. Results show that the influence of scan speed and offset focus on resulting residual strain in a fully dense sample was not significant. In contrast to some previous literature, a uniform and Ti phase distribution was found in all investigated specimens. Furthermore, no strong strain variations along the build direction with respect to the deposition were found. The magnitude of strain in and phase show some variations both in the build plane and along the build direction, which seemed to correlate with the size of the primary grains. However, no relation was found between measured residual strains in and phase. Large primary grains and texture appear to have a strong effect on X ray based stress results with relatively small beam size, therefore it is suggested to use a large beam for representative bulk measurements and also to consider the prior grain size in experimental planning, as well as for mathematical modellin

    Texture of electron beam melted Ti-6Al-4V measured with neutron diffraction

    No full text
    Texture in materials is important as it contributes to anisotropy in the bulk mechanical properties. Ti-6Al-4V built with the additive manufacturing process (AM) electron beam melting (EBM) has been found to have anisotropic mechanical properties. Therefore, this work has been performed to investigate the texture variations of EBM built Ti-6Al-4V with neutron time of flight (TOF). For the work, samples were produced with different build geometries off-set by 90 degrees. A cast sample was additionally analyzed to investigate the bulk texture of conventionally manufactured material. Microstructural characterization was performed and the cast material was found to have a coarse colony α microstructure, whereas the EBM built material had a finer basket weave microstructure. Overall, the texture of the EBM built material was found to be weak having an multiple of random distribution (MRD) index of ~1 for the α phase, whilst the cast material possessed more than twice the amount of preferred orientation i.e. MRD 2.51 for the α phase

    Alpha texture variations in additive manufactured Ti-6Al-4V investigated with neutron diffraction

    No full text
    Variation of texture in Ti-6Al-4V samples produced by three different additive manufacturing (AM) processes has been studied by neutron time-of-flight (TOF) diffraction. The investigated AM processes were electron beam melting (EBM), selective laser melting (SLM) and laser metal wire deposition (LMwD). Additionally, for the LMwD material separate measurements were done on samples from the top and bottom pieces in order to detect potential texture variations between areas close to and distant from the supporting substrate in the manufacturing process. Electron backscattered diffraction (EBSD) was also performed on material parallel and perpendicular to the build direction to characterize the microstructure. Understanding the context of texture for AM processes is of significant relevance as texture can be linked to anisotropic mechanical behavior. It was found that LMwD had the strongest texture while the two powder bed fusion (PBF) processes EBM and SLM displayed comparatively weaker texture. The texture of EBM and SLM was of the same order of magnitude. These results correlate well with previous microstructural studies. Additionally, texture variations were found in the LMwD sample, where the part closest to the substrate featured stronger texture than the corresponding top part. The crystal direction of the α phase with the strongest texture component was [112¯3]

    Neuro-ophthalmic Manifestations of Cerebellar Disease

    No full text
    corecore