276 research outputs found

    Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines

    Get PDF
    A simple and highly efficient protocol for the synthesis of quinoxaline derivatives from various ortho-phenylenediamines with α-halo ketones under catalyst free conditions is reported by using polyethylene glycol (PEG-400) as an efficient recyclable medium without using any organic co-solvent or additive. This protocol gives wide range of quinoxaline derivatives with high yields

    1-Benzyl-2-(4-chloro­phen­yl)-4,5-di­phenyl-1H-imidazole

    Get PDF
    The mol­ecular conformation of the title compound, C28H21ClN2, is stabilized by an intra­molecular C—H⋯N hydrogen bond. It has many pharmacological properties, such as being an inhibitor of P38 MAP Kinase, and can play an important role in biochemical processes

    Cu-Catalyzed ligand-free synthesis of rosuvastatin based novel indole derivatives as potential anticancer agents

    Get PDF
    Rosuvastatin based novel indole derivatives designed as potential anti-cancer agents were synthesized via a newly developed ligand-free, simple, straightforward and inexpensive one-pot method. The methodology involved a Cu-catalyzed coupling-cyclization of a rosuvastatin based alkyne with o-iodoanilides in the presence of CuI and K2CO3 in PEG-400. Three of the synthesized compounds showed promising anti-proliferative activities against cancer cell lines and an increase of p21 mRNA expression and apoptotic effects in zebrafish embryos/larvae.Peer reviewe

    Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks

    Full text link
    [EN] The Zr terephthalate MOFs UiO-66 and UiO-66-NH2 have been found to be highly diastereoselective catalysts for the synthesis of a pyrano[3,2-c]quinoline through an inverse electron -demand aza-Diels-Alder [4+2] cycloaddition of an aryl Qmine (formed in situ from aniline and benzaldehyde) and 3,4-dihydro-2H-pyran in one pot, affording the corresponding trans isomer in diastereomeric excesses of 90-95 %. The solids are stable under the reaction conditions and can be reused at least three times without significant loss of activity or diastereoselectivity.Financial support from the Generalitat Valenciana (projects Consolider-Ingenio MULTICAT and AICO/2015/065), the Spanish Ministry of Economy and Competitiveness (MINECO) (program Severn Ochoa SEV20120267), and the Spanish Ministry of Science and Innovation (MICINN) (project MAT2014-52085-C2-1-P) is gratefully acknowledged. V. L. R. thanks the Fundacion "La Caixa" for a "La Caixa-Severo Ochoa" Ph. D. Scholarship. This project received funding from the European Union's Horizon 2020 Tesearch and Innovation Programme under the Marie Skolodowska Curie grant agreement number 641887.LĂłpez-Rechac, V.; GarcĂ­a Cirujano, F.; Corma CanĂłs, A.; LlabrĂ©s I Xamena, FX. (2016). Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks. European Journal of Inorganic Chemistry. 27:4512-4516. https://doi.org/10.1002/ejic.201600372S4512451627Li, B., Wang, H., & Chen, B. (2014). Microporous Metal-Organic Frameworks for Gas Separation. Chemistry - An Asian Journal, 9(6), 1474-1498. doi:10.1002/asia.201400031Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190sRodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., 
 Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische GerĂŒste fĂŒr die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063Llabres i Xamena, F., & Gascon, J. (Eds.). (2013). Metal Organic Frameworks as Heterogeneous Catalysts. Catalysis Series. doi:10.1039/9781849737586Gascon, J., Corma, A., Kapteijn, F., & LlabrĂ©s i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kYamada, N., Kadowaki, S., Takahashi, K., & Umezu, K. (1992). MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochemical Pharmacology, 44(6), 1211-1213. doi:10.1016/0006-2952(92)90387-xFaber, K., StÚckler, H., & Kappe, T. (1984). Non-steroidal antiinflammatory agents.1. Synthesis of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl alkanoic acids by the wittig reaction of quinisatines. Journal of Heterocyclic Chemistry, 21(4), 1177-1181. doi:10.1002/jhet.5570210450Weirich, J., & Antoni, H. (1990). Differential Analysis of the Frequency-Dependent Effects of Class 1 Antiarrhythmic Drugs According to Periodical Ligand Binding. Journal of Cardiovascular Pharmacology, 15(6), 998-1009. doi:10.1097/00005344-199006000-00019Jacquemond-Collet, I., Benoit-Vical, F., Valentin, A., Stanislas, E., MalliĂ©, M., & FourastĂ©, I. (2002). Antiplasmodial and Cytotoxic Activity of Galipinine and other Tetrahydroquinolines from Galipea officinalis. Planta Medica, 68(1), 68-69. doi:10.1055/s-2002-19869Wallace, O. B., Lauwers, K. S., Jones, S. A., & Dodge, J. A. (2003). Tetrahydroquinoline-Based selective estrogen receptor modulators (SERMs). Bioorganic & Medicinal Chemistry Letters, 13(11), 1907-1910. doi:10.1016/s0960-894x(03)00306-8Dorey, G., Lockhart, B., Lestage, P., & Casara, P. (2000). New quinolinic derivatives as centrally active antioxidants. Bioorganic & Medicinal Chemistry Letters, 10(9), 935-939. doi:10.1016/s0960-894x(00)00122-0Preface. (1996). Zeolites, 17(1-2), 1-2. doi:10.1016/s0144-2449(96)80002-9Ramesh, M., Mohan, P. S., & Shanmugam, P. (1984). A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron, 40(20), 4041-4049. doi:10.1016/0040-4020(84)85084-xCirujano, F. G., Leyva-PĂ©rez, A., Corma, A., & LlabrĂ©s i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878Povarov, L. S. (1967). αÎČ-UNSATURATED ETHERS AND THEIR ANALOGUES IN REACTIONS OF DIENE SYNTHESIS. Russian Chemical Reviews, 36(9), 656-670. doi:10.1070/rc1967v036n09abeh001680Nagarapu, L., Bantu, R., & Puligoundla, R. G. (2011). Tin(II)chloride catalyzed synthesis of pyranoquinolines, phenanthridinone and phenanthridine derivatives. European Journal of Chemistry, 2(2), 260-265. doi:10.5155/eurjchem.2.2.260-265.263Mahajan, D., Ganai, B. A., Sharma, R. L., & Kapoor, K. K. (2006). Antimony chloride doped on hydroxyapetite catalyzed stereoselective one-pot synthesis of pyrano[3,2-c]quinolines. Tetrahedron Letters, 47(45), 7919-7921. doi:10.1016/j.tetlet.2006.09.007Abdollahi-Alibeik, M., & Pouriayevali, M. (2011). 12-Tungstophosphoric acid supported on nano sized MCM-41 as an efficient and reusable solid acid catalyst for the three-component imino Diels–Alder reaction. Reaction Kinetics, Mechanisms and Catalysis, 104(1), 235-248. doi:10.1007/s11144-011-0345-9Kamble, V. T., Davane, B. S., Chavan, S. A., Muley, D. B., & Atkore, S. T. (2010). Imino Diels–Alder reactions: One-pot synthesis of tetrahydroquinolines. Chinese Chemical Letters, 21(3), 265-268. doi:10.1016/j.cclet.2009.11.016Yu, Y., Zhou, J., Yao, Z., Xu, F., & Shen, Q. (2010). Stereoselective synthesis of pyrano[3,2-c]- and furano[3,2-c]quinolines: Gadolinium chloride catalyzed one-pot aza-Diels-Alder reactions. Heteroatom Chemistry, 21(5), 351-354. doi:10.1002/hc.20612Khan, A. T., Das, D. K., & Khan, M. M. (2011). Ferric sulfate [Fe2(SO4)3·xH2O]: an efficient heterogeneous catalyst for the synthesis of tetrahydroquinoline derivatives using Povarov reaction. Tetrahedron Letters, 52(35), 4539-4542. doi:10.1016/j.tetlet.2011.06.080Jeong, K. S., Go, Y. B., Shin, S. M., Lee, S. J., Kim, J., Yaghi, O. M., & Jeong, N. (2011). Asymmetric catalytic reactions by NbO-type chiral metal–organic frameworks. Chemical Science, 2(5), 877. doi:10.1039/c0sc00582gVermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., 
 De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 22(20), 10313. doi:10.1039/c2jm16030gGole, B., Bar, A. K., Mallick, A., Banerjee, R., & Mukherjee, P. S. (2013). An electron rich porous extended framework as a heterogeneous catalyst for Diels–Alder reactions. Chemical Communications, 49(67), 7439. doi:10.1039/c3cc43681kGrigoropoulos, A., Whitehead, G. F. S., Perret, N., Katsoulidis, A. P., Chadwick, F. M., Davies, R. P., 
 Rosseinsky, M. J. (2016). Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF. Chemical Science, 7(3), 2037-2050. doi:10.1039/c5sc03494aLiu, Y., Mo, K., & Cui, Y. (2013). Porous and Robust Lanthanide Metal-Organoboron Frameworks as Water Tolerant Lewis Acid Catalysts. Inorganic Chemistry, 52(18), 10286-10291. doi:10.1021/ic400598xFeng, D., Gu, Z.-Y., Chen, Y.-P., Park, J., Wei, Z., Sun, Y., 
 Zhou, H.-C. (2014). A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society, 136(51), 17714-17717. doi:10.1021/ja510525sCavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., 
 Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882Cirujano, F. G., Corma, A., & LlabrĂ©s i Xamena, F. X. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 257, 213-220. doi:10.1016/j.cattod.2014.08.015Cirujano, F. G., Corma, A., & LlabrĂ©s i Xamena, F. X. (2015). Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 124, 52-60. doi:10.1016/j.ces.2014.09.047Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., 
 De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078uVermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie, 124(20), 4971-4974. doi:10.1002/ange.201108565Da Silva-Filho, L., da Silva, B., & Martins, L. (2012). Niobium Pentachloride Catalyzed Multicomponent Povarov Reaction. Synlett, 23(13), 1973-1977. doi:10.1055/s-0032-1316587Zhou, Z., Xu, F., Han, X., Zhou, J., & Shen, Q. (2007). Stereoselective Synthesis of Pyrano[3,2-c]- and Furano[3,2-c]quinolines: Samarium Diiodide-Catalyzed One-Pot Aza-Diels–Alder Reactions. European Journal of Organic Chemistry, 2007(31), 5265-5269. doi:10.1002/ejoc.200700288Babu, G., & Perumal, P. T. (1998). Convenient synthesis of pyrano[3,2-c]quinolines and indeno[2,1-c] quinolines by imino Diels-Alder reactions. Tetrahedron Letters, 39(20), 3225-3228. doi:10.1016/s0040-4039(98)00397-9Yadav, J., Subba Reddy, B., Madhuri, C. R., & Sabitha, G. (2004). LiBF4-Catalyzed Imino-Diels-Alder Reaction: A Facile Synthesis of Pyrano- and Furoquinolines. Synthesis, 2001(07). doi:10.1055/s-2001-14904Semwal, A., & Nayak, S. K. (2006). Copper(II) Bromide–Catalyzed Imino Diels–Alder Reaction: Synthesis of Pyrano[3,2‐c]‐ and Furo [3,2‐c]tetrahydroquinolines. Synthetic Communications, 36(2), 227-236. doi:10.1080/00397910500334595Domingo, L. R., Aurell, M. J., SĂĄez, J. A., & Mekelleche, S. M. (2014). Understanding the mechanism of the Povarov reaction. A DFT study. RSC Advances, 4(48), 25268. doi:10.1039/c4ra02916jLucchini, V., Prato, M., Scorrano, G., Stivanello, M., & Valle, G. (1992). Acid-catalysed addition of N-aryl imines to dihydrofuran. Postulated dependence of the reaction mechanism on the relative face of approach of reactants. Journal of the Chemical Society, Perkin Transactions 2, (2), 259. doi:10.1039/p29920000259Xu, X., Rummelt, S. M., Morel, F. L., Ranocchiari, M., & van Bokhoven, J. A. (2014). Selective Catalytic Behavior of a Phosphine-Tagged Metal-Organic Framework Organocatalyst. Chemistry - A European Journal, 20(47), 15467-15472. doi:10.1002/chem.201404498Schoenecker, P. M., Carson, C. G., Jasuja, H., Flemming, C. J. J., & Walton, K. S. (2012). Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 51(18), 6513-6519. doi:10.1021/ie202325pKandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., 
 Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601

    A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes

    Get PDF
    SmCl3 (20 mol%) has been used as an efficient catalyst for reaction between aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione at 120°C to give 1,8-dioxo-octahydroxanthene derivatives in high yield. The same reaction in water, at room temperature gave only the open chain analogue of 1,8-dioxo-octahydroxanthene. Use of eco-friendly green Lewis acid, readily available catalyst and easy isolation of the product makes this a convenient method for the synthesis of either of the products

    Homogeneous and heterogeneous catalysts for multicomponent reactions

    Full text link
    [EN] Organic synthesis performed through multicomponent reactions is an attractive area of research in organic chemistry. Multicomponent reactions involve more than two starting reagents that couple in an exclusive ordered mode under the same reaction conditions to form a single product which contains the essential parts of the starting materials. Multicomponent reactions are powerful tools in modern drug discovery processes, because they are an important source of molecular diversity, allowing rapid, automated and high throughput generation of organic compounds. This review aims to illustrate progress in a large variety of catalyzed multicomponent reactions performed with acid, base and metal heterogeneous and homogeneous catalysts. Within each type of multicomponent approach, relevant products that can be obtained and their interest for industrial applications are presented.The authors wish to gratefully acknowledge the Generalitat Valenciana for the financial support in the project CONSOLIDER-INGENIO 2010 (CSD2009-00050)Climent Olmedo, MJ.; Corma CanĂłs, A.; Iborra Chornet, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances. 2(1):16-58. https://doi.org/10.1039/c1ra00807bS16582

    Six-membered ring systems: with O and/or S atoms

    Get PDF
    A large variety of publications have emerged in 2012 involving O- and S-6- membered ring systems. The increasing number of reviews and other communica- tions dedicated to natural and synthetic derivatives and their biological significance highlights the importance of these heterocycles. Reviews on natural products involve biosynthesis and isolation of enantiomeric derivatives h12AGE4802i, biosynthesis, isolation, synthesis, and biological studies on the pederin family h12NPR980i and xanthones obtained from fungi, lichens, and bacteria h12CR3717i and on the potential chemotherapeutic value of phyto- chemical products and plant extracts as antidiabetic h12NPR580i, antimicrobial, and resistance-modifying agents h12NPR1007i. A more specific review covers a structure–activity relationship of endoperoxides from marine origin and their antitry- panosomal activity h12OBC7197i. New synthetic routes to naturally occurring, biologically active pyran derivatives have been the object of several papers. Different approaches have been discussed for the total synthesis of tetrahydropyran-containing natural products (")-zampanolide h12CEJ16868, 12EJO4130, 12OL3408i, (")-aspergillides A and B h12H(85)587, 12H(85)1255, 12TA252i, (ĂŸ)-neopeltolide h12JOC2225, 12JOC9840, 12H(85) 1255i, or their macrolactone core h12OBC3689, 12OL2346i. The total synthesis of bistramide A h12CEJ7452i and (ĂŸ)-kalihinol A h12CC901i and the stereoselec- tive synthesis of a fragment of bryostatin h12S3077, 12TL6163i have also been sur- veyed. Other papers relate the total synthesis of naturally occurring carbocyclic and heterocyclic-fused pyran compounds, such as (")-dysiherbaine h12CC6295i, penos- tatin B h12OL244i, Greek tobacco lactonic products, and analogues h12TL4293i and on the structurally intriguing limonoids andhraxylocarpins A–E h12CEJ14342i. The stereocontrolled synthesis of fused tetrahydropyrans was used in the preparation of blepharocalyxin D h12AGE3901i. Polyphenolic heterocyclic compounds have also received great attention in 2012. The biological activities and the chemistry of prenylated caged xanthones h12PCB78i, the occurrence of sesquiterpene coumarins h12PR77i, and the medicinal properties of the xanthone mangiferin h12MRME412i have been reviewed. An overview on the asymmetric syntheses of flavanones and chromanones h12EJO449i, on the synthesis and reactivity of flavones h12T8523i and xanthones h12COC2818i, on the synthesis and biosynthesis of biocoumarins h12T2553i, and on the synthesis and applications of flavylium compounds h12CSR869i has been discussed. The most recent developments in the synthesis and applications of sultones, a very important class of sulfur compounds, were reported h12CR5339i. A review on xanthene-based fluorescent probes for sensing cations, anions, bio- logical species, and enzyme activity has described the spiro-ring-opening approach with a focus on the major mechanisms controlling their luminescence behavior h12CR1910i. The design and synthesis of other derivatives to be used as sensors of gold species h12CC11229i and other specific metal cations h12PC823i have also been described. Recent advances related to coumarin-derived fluorescent chemosen- sors for metal ions h12COC2690i and to monitoring in vitro analysis and cellular imaging of monoamine oxidase activity h12CC6833i have been discussed. The study of various organic chromophores allowed the synthesis of novel dica- tionic phloroglucinol-type bisflavylium pigments h12SL2053i, and the optical and spectroscopic properties of several synthetic 6-aryldibenzo[b,d]pyrylium salts were explored h12TL6433i. Discussion of specific reactions leading to O- and S-membered heterocyclic compounds covers intramolecular radical cyclization h12S2475i and asymmetric enamine and dienamine catalysis h12EJO865i, oxa-Michael h12CSR988i and dom- ino Knoevenagel–hetero-Diels–Alder (hDA) reactions h12T5693i, and the versatility in cycloadditions as well as nucleophilic reactions using o-quinones h12CSR1050i. The use of specific reagents relevant to this chapter includes molecular iodine h12CEJ5460, 12COS561i, samarium diiodide–water for selective reductive transfor- mations h12CC330i, o-quinone methides as versatile intermediates h12CEJ9160i, InCl3 as catalyst h12T8683i, and gold and platinum p-acid mediated insertion of alkynes into carbon–heteroatom s-bonds h12S3401i. The remainder of this chapter discusses the most studied transformations on O- and S-6-membered heterocycles

    Nuclear magnetic resonance data of C11H9N3O2S2

    No full text
    • 

    corecore