Synthesis of some novel 1-aminomethyl-3-benzoylhydrazono-2indolinones as potential antiinflammatory agents[†]

Lingaiah Nagarapu*, Narender Ravirala & Dattatray M Akkewar

Division of Industrial Organic Chemistry II, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 18 October 1996; accepted (revised) 19 November 1997

Acid-catalysed condensation of hydrazides **3**, obtained from substituted phenoxybenzoic acids **1** with indolin-2,3-dione **4**, results into hydrazono-2-indolinones **5**. Compounds **5** when subjected to Mannich reaction with different cyclic secondary amines yield 1-aminomethyl-3-benzoylhydrazono-2-indolinones **6** (Mannich bases). All these compounds (**6a-i**) exhibit significant antiinflammatory activity.

Various isatin derivatives have been reported to possess promising biological activities¹. Moreover, some substituted diphenyl ethers^{2,3} and Mannich bases of isatins are well known antiinflammatory agents⁴. In view of the above observatons a number of Mannich bases, incorporating substituted *m*-phenoxybenzoic acid residue, have been synthesized and their analgesic and anti-inflammatory activities studied in the present investigation.

We are reporting here for the first time the synthesis of 1-piperazino/morpholino/piperidinomethyl-3-(3'-phenoxybenzoylhydrazono)- 2-indolinones 6a-i and their biological activity. The required carboxy substituted diphenyl ethers 1a-c were prepared by the condensation of mhalobenzoic acid derivatives with substituted phenols by a known dry Ullmann-Goldberg method⁵. Esterification followed by hydrozinolysis of 1a-c have resulted into the methyl esters 2a-c and hydrazides 3a-c respectively in good yields. Acid catalysed condensation of **3a-c** with isatin⁶ **4** gave the compounds **5a-c**. The aminomethylation⁷ of 5a-c with cyclic secondary amines such as Nmethylpiperazine, morpholine and piperidine led to the target Mannich bases 6a-i. Their structures were established by their IR, ¹H NMR, and mass spectral data and elemental analysis. These compounds (6a-i) were tested for their analgesic and antiinflammatory activities.

[†]IICT Communication No. 3737.

Analgesic and antiinflammatory activities. Analgesic and antiinflammatory activities of the compounds **6a-i** were determined by Turner⁸ withing test⁹ and rat-paw edema test¹⁰. The inhibition of edema was recorded on a plethysmometer (UGO BASILE make) and expressed as % inhibition. The results are given in **Table I**. Compounds **6a-i** showed 31-33% inhibition in rats while aspirin and phenylbutazone at the same dose (100 mg/kg, P.O.) produced 17% ard 39% inhibition of 1% carrageenan-induced inflammation, respectively. The per cent protection for each compound was calculated using the following formula:

% Protection =
$$100 - \frac{\text{No.of wriths in test}}{\text{No. of wriths in control}} \times 100$$

All the new compounds (**6a-i**) exhibited significant antiinflammatory activity comparable with that of phenylbutazone. However, they were found to possess weak analgesic action with reference to aspirin.

Experimental Section

General. Melting points were determined in open glas capillaries on a Metler FP5 melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on a Varian (80 MHz) and Gemini (200 MHz) spectrometers (chemical shifts are recorded in δ , ppm); internal standard was TMS. Mass spectra were taken on a VG micromass 7070H or a Finnigan Met 1020B mass spectrometer.

3-Carboxydiphenyl ethers 1a-c. A mixture of 3-chlorobenzoic acid (4 mmoles), phenol (8 mmoles), K_2CO_3 anhydrous (8 mmoles), pyridine (2 mmoles), Cu powder (0.2 g) and cuprous iodide (0.2 g) in 25 mL water was kept at reflux for 2 hr. The mixture was then basified with Na₂CO₃ solution and extracted with Et₂O. The aqueous solution was acidified with HCl, and the precipitated solid filtered off, dissolved in NaOH, the basic solution filtered and acidified with acetic acid.

1a: Yield 55%, mp 145.8°C (lit.^{11,12} mp 145°C); H NMR (CDCl₃: δ 6.75-7.95 (m, 9H, Ar–H).

1b: Yield 52%, mp 152.6°C; ¹H NMR (CDCl₃: δ 6.68-7.80 (m, 8H, Ar–H) and 2.31 (s, 3H, –CH₃); MS: m/z 228 [M⁺]. Anal. Calcd for C₁₄H₁₂O₃: C, 73.68; H, 5.26. Found: C, 73.66; H, 5.20%.

activities of compounds 6a-i			
Compd	Analgesic action (% protection of pain)		Antiinflammatory action
			(% inhibition)
	Tail clip	Writhing	(Rat paw edema)
6a	15	12	32
6b	13	11	32
6c	13	12	31
6d	14	12	32
6e	15	11	31
6f	15	12	33
6g	19	16	31
6h	16	13	33
6i	16	12	31
Aspirin	55	46	17
(100 mg/kg)			
Phenylbuta-	30	26	39
zone			
(100 mg/kg)			

Table I—Evaluation of analgesic and antiinflammatory

The results were mean of two observations. Values of 20% inhibition or greater were significant (P > 0.01).

1c: Yield 58%, mp 131°C; ¹H NMR (CDCl₃): δ 6.76-7.91 (m, 8H, Ar–H). MS: m/z 248 [M⁺]. Anal. Calcd for C₁₃H₉O₃Cl: C, 62.90; H, 3.62. Found: C, 62.87; H, 3.60%.

3-(3'-Phenoxybenzoylhydrazono)-2-indolinones 5a-c. 3-Phenoxybenzoylhydrazine (5 mmoles) and isatin (5 mmoles) in 15 mL of ethanol containing 10 drops of gl. acetic acid was heated for 3 hr and left overnight at room temperature. The solid product thus obtained was washed repeatedly with methanol.

5a: Yield 78%, mp 280.8°C (dec.); MS: m/z 357 $[M^+]$. Anal. Calcd for $C_{21}H_{15}N_3O_3$: C, 71.98; H, 4.20; N, 11.76. Found: C, 71.98; H, 4.20; N, 11.76%.

5b: Yield 80%, mp 277°C; MS: m/z 371 [M⁺]. Anal. Calcd for $C_{22}H_{17}N_3O_3$: C, 71.15; H, 4.58; N, 11.32. Found: C, 71.11; H, 4.55; N, 11.30%.

5c: Yield 85%, mp 265.2°C; MS: m/z 396 [M⁺]. Anal. Calcd for $C_{21}H_{14}CIN_3O_3$: C, 64.89; H, 3.53; N, 10.60. Found: C, 64.85; H, 3.54; N, 10.55%.

1-Morpholinomethyl-(3'-phenoxybenzoylhydrazono)-2-indolinone 6a-i. 3-(3'-Phenoxybenzoylhydrazono)-2-indinone 5 (5 mmoles) was suspended in dimethylformamide (10 mL). To that solution slightly more than 5 mmoles of aq. formaldehyde and morpholine (5 mmole) were added with vigorous stirring. The reaction mixture was heated on a water-bath for 30 min and left overnight at room temperature. The product thus obtained was recrystallized from chloroform-hexane.

6a: Yield 86%, mp 183.2°C; IR (KBr): 3440, 2850, 1680 cm⁻¹; -¹H NMR (DMSO-*d*₆): δ 3.80 (s, 3H, N–CH₃), 2.55 (t, 4H, –CH₂–N–CH₂), 2.60 (t, 4H, –CH₂–N–CH₂), 4.45 (s, 2H, N–CH₂–N), 6,70-7.81 (m, 13H, Ar–H) and 13.68 (s, 1H, –NHCO, D₂O exchangeable); MS: m/z 469 [M⁺]. Anal. Calcd for C₂₇H₂₇N₅O₃: C, 69.08; H, 5.75; N, 14.92. Found: C, 69.00; H, 5.71; N, 14.90%.

6b: Yield 71.5%, mp 163.8°C; IR (KBr): 3435, 2850, 1675 cm⁻¹; ¹H NMR (DMSO- d_6): δ 3.72 (t, 4H, -CH₂-O-CH₂), 2.60 (t, 4H, -CH₂-N-CH₂), 4.70 (s, 2H, N-CH₂-N), 6.68-7.82 (m, 13H, Ar-H) and 13.74 (s, 1H, -NHCO, D₂C exchangeable); MS: m/z 456 [M⁺]. Anal. Calcd for C₂₆H₂₄N₄O₄: C, 68.42; H, 5.26; N, 12.28. Found: C, 68.40; H, 5.26; N, 12.25%.

6c: Yield 88%, mp 139.9°C; IR (KBr): 3260, 2940, 1680 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.45 [m, 6H, (CH₂)₃], 2.55 (m, 4H, -CH₂-N-CH₂), 4.42 (s, 2H, -N-CH₂-N), 6.66-7.80 (m, 13H, Ar-H) and 13.90 (s, 1H, -NHCO, D₂O exchangeable_; MS: m/z 454 [M⁺]. Anal. Calcd for C₂₇H₂₆N₄O₃: C, 71.36; H, 5.72; N, 12.33. Found: C, 71.33; H, 5.70; N, 12.00%.

6d: Yield 78%, mp 252.9°C; IR (KBr): 3410, 2840, 1675 cm⁻¹; ¹H NMR (DMSO- d_6): δ 3.78 (s, 3H, N–CH₃), 2.56 (t, 4H, –CH₂–N–CH₂), 2.61 (t, 4H, –CH₂–N–CH₂), 4.45 (s, 2H, N–CH₂–N), 2.32 (s, 3H, Ar–CH₃), 6.66-7.80 (m, 12H, Ar–H) and 13.90 (s, 1H, –NHCO, D₂O exchangeable); MS: m/z 483 [M⁺]. Anal. Calcd for C₂₈H₂₉N₅O₃: C, 69.56; H, 6.00; N, 14.49. Found: C, 69.50; H, 6.01; N, 14.41%.

6e: Yield 76.9%, mp 170°C; IR (KBr): 2850, 1665 cm⁻¹; ¹H NMR (DMSO- d_6): δ 3.70 (t, 3H, -CH₂-O-CH₂), 2.62 (t, 4H, -CH₂-N-CH₂), 4.75 (s, 2H, N-CH₂-N), 2.35 (s, 3H, Ar-CH₃), 6.70-7.81 (m, 12H, Ar-H) and 13.95 (s, 1H, -NHCO, D₂O exchangeable); MS: m/z 470 [M⁺]. Anal. Calcd for C₂₇H₂₆N₄O₄: C, 68.93; H, 5.53; N, 11.91. Found: C, 68.90; H, 5.51; N, 11.80%.

6f: Yield 85%, mp 148°C; IR (KBr): 3265, 2950, 1680 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.47 [s,6H, (CH₂)₃], 2.60 (t, 4H, -CH₂-N-CH₂), 4.45 (s, 2H, -N-CH₂-N), 2.32 (s, 3H, Ar-CH₃), 6.50-7.66 (m, 12H, Ar-H) and 13.90 (s, 1H, -NHCO, D₂O

exchangeable; MS: m/z 468 [M⁺]. Anal. Calcd for $C_{28}H_{28}N_4O_3$: C, 71.79; H, 5.98; N, 11.96. Found: C, 71.72; H, 5.95; N, 11.98%.

6g: Yield 85%, mp 166°C; IR (KBr): 3230, 2930, 1670 cm⁻¹; ¹H NMR (DMSO- d_6): δ 3.91 (s, 3H, N–CH₃), 2.81 (m, 4H, –CH₂–N–CH₂), 2.66 (t, 4H, –CH₂–N–CH₂), 4.45 (s, 2H, –N–CH₂–N), 2.32 (s, 3H, Ar–CH₃), 6.85-8.00 (m, 12H, Ar–H) and 14.01 (s, 1H, –NHCO, D₂O exchangeable); MS: m/z 503 [M⁺]. Anal. Calcd for C₂₇H₂₆ClN₅O₃: C, 64.41; H, 5.16; N, 13.91. Found: C, 64.40; H, 5.13; N, 13.85%.

6h: Yield 77.6%, mp 186.2°C; IR (KBr): 3410, 2830, 1660 cm⁻¹; ¹H NMR (DMSO- d_6): δ 3.72 (t, 4H, -CH₂-O-CH₂), 2.61 (t, 4H, -CH₂-N-CH₂), 4.70 (s, 2H, -N-CH₂-N), 2.40 (s, 3H, Ar-CH₃), 6.72-7.83 (m, 12H, Ar-H) and 13.77 (s, 1H, -NHCO, D₂O exchangeable); MS: m/z 490 [M⁺]. Anal. Calcd for C₂₆H₂₃ClN₄O₄: C, 63.67; H, 4.69; N, 11.42. Found: C, 63.65; H, 4.66; N, 11.42%.

6i: Yield 86.2%, mp 131.8°C; IR (KBr): 3260; 2950, 1675 cm⁻¹; ¹H NMR (DMSO- d_6): δ 1.45 [m, 6H, (CH₂)₃], 2.55 (t, 4H, -CH₂-N-CH₂, 4.45 (s, 2H, -N-CH₂-N), 6.69-7.63 (m, 12H, Ar-H) and 13.89 (s, 1H, -NHCO, D₂O exchangeable); MS: m/z 488 [M⁺]. Anal. Calcd for C₂₇H₂₅ClN₄O₃: C, 66.39; H, 5.12; N, 11.47. Found: C, 66.35; H, 5.10; N, 11.41%.

Acknowledgement

The authors are thankful to the Director, and the Head, Division of Organic Chemistry-II, IICT for providing facilities.

References

- 1 Singh S P, Shukla S K & Awasthi L P, *Curr Sci*, 52, 1983, 766.
- 2 Atkinson D C, Godfrey K E, Meek B, Saville J E & Stillings M R, *J Med Chem*, 26, **1983**, 1353.
- 3 Atkinson D C, Godfrey K E, Myers P L, Phillips N C, Stillings M R & Welbourn A P, J Med Chem, 26, 1983, 1361.
- 4 Swarup Sanjay, Saxena V K & Chowdhary S R, Indian Drugs, 27, 1990, 536.
- 5 (a) Rolando F P, Ramon Carrasco, Virgen Milian & Lorenzo Rodes, *Synthe Commun*, 25, 1995, 1077; (b) Goldberg A A & Wragg A H, *J Chem Soc*, 1958, 4227; (c) Goldberg A A & Walker J, *J Chem Soc*, 1953, 1348.
- 6 Varma R A, Prakash R & Khan M M A A, Indian Drugs, 27, 1989, 101.
- 7 *Heterocyclic compds*, Vol 3, Edited by Robert C Elderfield (John Willey & Sons, Inc, London), **1952**, 217.

- 8 Turner R A, Analgesics in screening method in pharmacology, 1st Edn (Acad Press, New York), 1965, 100.
- 9 Koester R, Anderson R & De Deer E S, Acetic acid for analgesic screening, Fed Proc, 18, 1957, 412.
- 10 Winter C A, Risley E A & Nuss G W, Proc Soc Exp Biol Med, 11, **1962**, **544**.
- 11 Langham W, Brewster R Q & Gilman H, J Am Chem Soc, 63, 1941, 545.
- 12 Shirley D A & Lehto E A, J Am Chem Soc, 77, 1955, 1841.