16 research outputs found

    Dasatinib in First- and Second-Line Therapy of Chronic Myeloid Leukemia: Efficacy, Safety and Quality of Life

    Get PDF
    Background & Aims. The article presents results of two observational, prospective, multicenter studies “Quality of Life, Symptom Profile, and Adherence to Treatment in Adult Patients with Newly Diagnosed Chronic Phase Chronic Myeloid Leukemia Receiving Dasatinib” (2012–2015) and “Quality of Life and Symptom Profile in Imatinib-Resistant or Intolerant Patients with Chronic Myeloid Leukemia” (2011–2014). Methods. Data of 107 patients with chronic myeloid leukemia in chronic phase were involved in the real-world analysis — 32 newly diagnosed patients on first-line treatment with dasatinib or after yearly switch to dasatinib after imatinib treatment failure and 75 imatinib-resistant or intolerant patients on second-line treatment with dasatinib. Treatment effectiveness and safety of dasatinib were assessed during first and second-line dasatinib treatment using clinical outcomes as well as quality of life and symptom profile assessment. Results. The real-world data obtained during observational study in limited population of CML patients conform the results of clinical trials devoted to evaluation of treatment efficacy and safety of dasatinib treatment in first and second-line treatment and demonstrate the importance of patient-reported outcomes. Patient’s quality of life improved within 12 months of the first-line dasatinib therapy according to the following scales: role physical functioning, pain, vitality, social functioning and role emotional functioning. The most pronounced and clinically significant improvement was observed for the role emotional functioning (51.1 vs. 68.9). During the second-line dasatinib treatment, stabilization of quality of life parameters was registered for the following scales: vitality, social functioning, mental health, and pain. Significant improvement of the Integral Quality of Life Index was observed (p < 0.05). Positive dynamics of relevant symptoms was registered. The symptom severity decreased during both the first and second-line therapy. Conclusion. Quality of life and symptom assessment in CML patients contribute to a better disease control in accordance with the principles of risk-adaptive therapy

    Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode

    Get PDF
    Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as “stepping stones” for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore