475 research outputs found

    Homogeneous Analysis of the Dust Morphology of Transition Disks Observed with ALMA: Investigating Dust Trapping and the Origin of the Cavities

    Get PDF
    We analyze the dust morphology of 29 transition disks (TDs) observed with ALMA at (sub-) millimeter-emission. We perform the analysis in the visibility plane to characterize the total flux, cavity size, and shape of the ring-like structure. First, we found that the MdustMM_{\rm{dust}}-M_\star relation is much flatter for TDs than the observed trends from samples of class II sources in different star forming regions. This relation demonstrates that cavities open in high (dust) mass disks, independent of the stellar mass. The flatness of this relation contradicts the idea that TDs are a more evolved set of disks. Two potential reasons (not mutually exclusive) may explain this flat relation: the emission is optically thick or/and millimeter-sized particles are trapped in a pressure bump. Second, we discuss our results of the cavity size and ring width in the context of different physical processes for cavity formation. Photoevaporation is an unlikely leading mechanism for the origin of the cavity of any of the targets in the sample. Embedded giant planets or dead zones remain as potential explanations. Although both models predict correlations between the cavity size and the ring shape for different stellar and disk properties, we demonstrate that with the current resolution of the observations, it is difficult to obtain these correlations. Future observations with higher angular resolution observations of TDs with ALMA will help to discern between different potential origins of cavities in TDs

    A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue

    Get PDF
    Radiofrequency catheter ablation (RFCA) is an effective treatment for cardiac arrhythmias. Although generally safe, it is not completely exempt from the risk of complications. The great flexibility of computational models can be a major asset in optimizing interventional strategies, if they can produce sufficiently precise estimations of the generated lesion for a given ablation protocol. This requires an accurate description of the catheter tip and the cardiac tissue. In particular, the deformation of the tissue under the catheter pressure during the ablation is an important aspect that is overlooked in the existing literature, that resorts to a sharp insertion of the catheter into an undeformed geometry. As the lesion size depends on the power dissipated in the tissue, and the latter depends on the percentage of the electrode surface in contact with the tissue itself, the sharp insertion geometry has the tendency to overestimate the lesion obtained, especially when a larger force is applied to the catheter. In this paper we introduce a full 3D computational model that takes into account the tissue elasticity, and is able to capture the tissue deformation and realistic power dissipation in the tissue. Numerical results in FEniCS-HPC are provided to validate the model against experimental data, and to compare the lesions obtained with the new model and with the classical ones featuring a sharp electrode insertion in the tissue.La Caixa 2016 PhD grant to M. Leoni, and Abbott non-conditional grant to J.M. Guerra Ramo

    Incidence of local complications and risk factors associated with peripheral intravenous catheter in neonates

    Get PDF
    Abstract OBJECTIVE To evaluate the incidence of complications related to the use of peripheral intravenous catheter in neonates and identify the associated risk factors. METHOD Prospective cohort study conducted in a Neonatal Intensive Care Unit. Participants were the hospitalized neonates undergoing peripheral intravenous puncture in the period from February to June 2013. RESULTS The incidence of complications was 63.15%, being infiltration/extravasation (69.89%), phlebitis (17.84%) and obstruction (12.27%). The risk factors were the presence of infection (p = 0.0192) and weight at the puncture day (p = 0.0093), type of intermittent infusion associated with continuous infusion (p <0.0001), endotracheal intubation (p = 0.0008), infusion of basic plan (p = 0.0027), total parenteral nutrition (P = 0.0002), blood transfusion associated with other infusions (p = 0.0003) and other drugs (p = 0.0004). Higher risk of developing complications in the first 48 hours after puncture. CONCLUSION A high rate of complications related to the use of peripheral intravenous catheter, and risk factors associated with infection, weight, drugs and infused solutions, and type of infusion

    Characterization of star-forming dwarf galaxies at 0.1 ≲ z ≲ 0.9 in VUDS: Probing the low-mass end of the mass-metallicity relation

    Get PDF
    We present the discovery and spectrophotometric characterization of a large sample of 164 faint (iABi_{AB} \sim 2323-2525 mag) star-forming dwarf galaxies (SFDGs) at redshift 0.130.13 z\leq z \leq 0.880.88 selected by the presence of bright optical emission lines in the VIMOS Ultra Deep Survey (VUDS). We investigate their integrated physical properties and ionization conditions, which are used to discuss the low-mass end of the mass-metallicity relation (MZR) and other key scaling relations. We use optical VUDS spectra in the COSMOS, VVDS-02h, and ECDF-S fields, as well as deep multiwavelength photometry, to derive stellar masses, star formation rates (SFR) and gas-phase metallicities. The VUDS SFDGs are compact (median rer_{e} \sim 1.21.2 kpc), low-mass (MM_{*} \sim 10710910^7-10^9 MM_{\odot}) galaxies with a wide range of star formation rates (SFR(HαH\alpha) 103101\sim 10^{-3}-10^{1} M/yrM_{\odot}/yr) and morphologies. Overall, they show a broad range of subsolar metallicities (12+log(O/H)=7.267.26-8.78.7; 0.040.04 Z/Z\lesssim Z/Z_{\odot} \lesssim 11). The MZR of SFDGs shows a flatter slope compared to previous studies of galaxies in the same mass range and redshift. We find the scatter of the MZR partly explained in the low mass range by varying specific SFRs and gas fractions amongst the galaxies in our sample. Compared with simple chemical evolution models we find that most SFDGs do not follow the predictions of a "closed-box" model, but those from a gas regulating model in which gas flows are considered. While strong stellar feedback may produce large-scale outflows favoring the cessation of vigorous star formation and promoting the removal of metals, younger and more metal-poor dwarfs may have recently accreted large amounts of fresh, very metal-poor gas, that is used to fuel current star formation

    Chemical and Microbiological Contamination in Limpet (Patella spp.) of the Portuguese Coast

    Get PDF
    Coastal production areas can be impacted by anthropogenic contamination from urban, agro-industrial and leisure activities. Some contaminants, such as chemical substances might also have a telluric origin. Non filter feeding univalve mollusks, such as limpets, which are collected in rocky shores either for sale or for auto-consumption, are very appreciated in Portugal, but have been excluded from provisions on the classification of production areas, although can present relevant contamination. Thus, the aim of this study was to assess the microbiological and toxic metal contaminations in limpets (Patella spp) of the Portuguese coast, taking into account the production area and seasonal variation, and comparing their contamination levels with those occurring in bivalve mollusk indicator species, mussel (Mytilus edulis). The risks associated to the consumption of limpet meals were also assessed. For that, microbial total and fecal levels and cadmium, lead and mercury contents in limpets and mussels samples from three coastal areas over several months were analyzed based on standard methodologies. Contents of mercury and lead in limpets from the three areas studied, were always below the limits of 0.50 mg kg-1 and 1.5 mg kg-1 allowed by the EU, respectively. Regarding cadmium, levels in limpet were always above the limit of 1.0 mg kg-1, reaching about 3.0 mg kg-1 in some samples. These values probably indicate contamination from telluric origin (soil or rocks) in the coastal studied areas. Results indicated that microbiological contamination of fecal origin was low and in general below the detection level. Contamination levels did not show a clear seasonal pattern. The two mollusk species, limpets and mussels, differed statistically in all contaminants analyzed, being cadmium the most of concern, and always higher in limpets than in mussel samples. Thus, the potential risk associated with limpet consumption, taking into account the cadmium tolerable weekly intake (TWI), was investigated, being possible to reach a reliable recommendation of less than a monthly meal of 160 g. As recreational picking of limpets is common in Portugal, official 4recommendations of maximum periodic human consumption should be published and enforcement increased in forbidden areasinfo:eu-repo/semantics/acceptedVersio

    Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    Get PDF
    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications

    Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum

    Get PDF
    Abstract Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages.</p

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Mammalian Glutaminase Gls2 Gene Encodes Two Functional Alternative Transcripts by a Surrogate Promoter Usage Mechanism

    Get PDF
    Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene.We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed.This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was species- and tissue-specific providing evidence of a differential regulation of GLS2 transcripts in mammals

    Evaluation of the genotoxic and antigenotoxic potential of Melissa officinalis in mice

    Get PDF
    Melissa officinalis (L.) (Lamiaceae), a plant known as the lemon balm, is native to the east Mediterranean region and west Asia. Also found in tropical countries, such as Brazil, where it is popularly known as “erva-cidreira” or “melissa”, it is widely used in aqueous- or alcoholic-extract form in the treatment of various disorders. The aim was to investigate in vivo its antigenotoxicity and antimutagenicity, as well as its genotoxic/mutagenic potential through comet and micronucleus assaying. CF-1 male mice were treated with ethanolic (Mo-EE) (250 or 500 mg/kg) or aqueous (Mo-AE) (100 mg/kg) solutions of an M. officinalis extract for 2 weeks, prior to treatment with saline or Methyl methanesulfonate (MMS) doses by intraperitoneal injection. Irrespective of the doses, no genotoxic or mutagenic effects were observed in blood and bone-marrow samples. Although Mo-EE exerted an antigenotoxic effect on the blood cells of mice treated with the alkylating agent (MMS) in all the doses, this was not so with Mo-AE. Micronucleus testing revealed the protector effect of Mo-EE, but only when administered at the highest dose. The implication that an ethanolic extract of M. officinalis has antigenotoxic/antimutagenic properties is an indication of its medicinal relevance
    corecore