52 research outputs found
Closed-loop extended orthogonal space frequency block coding techniques for OFDM based broadband wireless access systems
A simple extended orthogonal space-frequency coded multiple input single output (MISO) orthogonal frequency division multiplexing (OFDM) transmitter diversity technique for wireless communications over frequency selective fading channels is presented. The proposed technique utilizes OFDM to transform frequency selective fading channels into multiple flat fading sub-channels on which space-frequency coding is applied. A four-branch transmitter diversity system is implemented without bandwidth expansion and with only one receive antenna. The associated simulations verify that the four-branch transmitter diversity scheme achieves a significant improvement in average bit-error rate (BER) performance. The proposed scheme also outperforms the previously reported scheme due to Yu, Keroueden, and Yuan with only single phase feedback, and that improvement is retained with quantized feedback. Since the angle feedback is on a per tone basis, the feedback information would be too large for any practical OFDM system. However, we adopt a method which exploits the correlation among the feedback terms for the subcarriers, i.e. a group based quantization technique to reduce the feedback overhead significantly, rendering this scheme attractive to broadband wireless access systems. The performance improvement of convolutionally concatenated space-frequency block coding (CCSBC) schemes is also investigated
Potential applications of nanotechnology in thermochemical conversion of microalgal biomass
The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Adaptive Resource Allocation Within Three-Stage OFDM Relay Networks
This is a conference paper [© IEEE]. It is also available at: http://ieeexplore.ieee.org/ Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.In this work we consider OFDM transmission, due to its potential for meeting the stringent quality of service (QoS) targets of next-generation broadband distributed wireless networks, over three-stage relay networks. In particular, we examine distributed adaptive space-frequency coding for generally asynchronous links composed of four transmit and/or receive antennas, i.e. exploiting quasi-orthogonal and extended-orthogonal coding schemes. The successful deployment of these closed-loop methods is dependent upon channel state information (CSI) being available for each stage of the network. Taking the maximum end-to-end data rate as the optimal criterion, an adaptive resource allocation (RA) scheme suitable for a wide range of signal-to-noise-ratios (SNRs) and a prescribed transmit power budget is proposed to distribute appropriate resources to each stage based on the channel state information (CSI) and knowledge of the network topology
Resource allocation and block coding within a three-stage collaborative broadband relay network
In this work we propose a power control algorithm
for a multi-input multi-output orthogonal frequency division
multiplexing (MIMO-OFDM) multi-hop collaborative relaying
network. Using orthogonal and quasi-orthogonal block codes
with three stage processing our algorithm optimally distributes
available transmission power based on the architecture and
the channel condition at each stage so as to minimize the
end-to-end bit error rate (HER) of the entire relay network.
For high data rate applications with maximum throughput (as
expected for future OFDM systems), we employ a regenerative
relaying process, where the relays at each stage decode and
through collaborative processing, re-encode the received data
before onward transmission to the next stage and then to the
destination.
We provide simulation results 1 that confirm the performance
improvement in the end-to-end bit error rate (HER) of the network
using our explicit power allocation algorithm as compared
with equal power distribution technique
- …