125 research outputs found

    Moral, wasteful, frugal, or thrifty? Identifying consumer identities to understand and manage pro-environmental behaviour

    Get PDF
    Moral motives are important for pro-environmental behavior. But such behavior is not only motivated by moral or environmental concerns. We examined what higher order motives, other than morality, may be important for understanding pro-environmental behavior, by studying consumer identities. In three studies (N = 877) four consumer identities were distinguished: moral, wasteful, frugal, and thrifty. Frugal and moral consumer identities were most salient and were the strongest predictors of pro-environmental behaviors, but in different ways. Frugality, which is related to, but distinct from thriftiness, was particularly important for behaviors associated with waste reduction of any kind (including money). The findings suggest that people adopt the same behavior for different reasons, in ways consistent with their consumer identities. People manage multiple consumer identities simultaneously, and environmental policy is likely to be more effective if it addresses these multiple identities

    Phytoestrogen intake and other dietary risk factors for low motile sperm count and poor sperm morphology

    Get PDF
    Background Few potentially modifiable risk factors of male infertility have been identified, and while different diets and food groups have been associated with male infertility, evidence linking dietary factors including phytoestrogens and semen quality is limited and contradictory. Objectives To study the associations between phytoestrogen intake and other dietary factors and semen quality. Materials and Methods A case‐referent study was undertaken of the male partners, of couples attempting conception with unprotected intercourse for 12 months or more without success, recruited from 14 UK assisted reproduction clinics. A total of 1907 participants completed occupational, lifestyle and dietary questionnaires before semen quality (concentration, motility and morphology) were assessed. Food intake was estimated by a 65‐item food frequency questionnaire (FFQ) covering the 12 months prior to recruitment. Analyses of dietary risk factors for low motile sperm concentration (MSC: <4.8 × 106/mL) and poor sperm morphology (PM: <4% normal morphology) used unconditional logistic regression, accounting for clustering of subjects within the clinics, first without, and then with, adjustment for confounders associated with that outcome. Results High consumption of daidzein (≥13.74 μg/d), a phytoestrogen found in soy products, was a protective factor for MSC with an odds ratio (95%CI) of 0.58 (0.42‐0.82) after adjustment for clustering and potential confounding. Dietary risk factors for PM after similar adjustment showed that drinking whole milk (OR 0.67, 95%CI 0.47‐0.96) and eating red meat were protective with an OR 0.67 (0.46‐0.99) for eating red meat >3 times/wk. Discussion In this case‐referent study of men attending an infertility clinic for fertility diagnosis, we have identified that low MSC is inversely associated with daidzein intake. In contrast, daidzein intake was not associated with PM but eating red milk and drinking whole milk were protective. Conclusions Dietary factors associated with semen quality were identified, suggesting that male fertility might be improved by dietary changes

    The impact of workplace risk factors on the occurrence of neck and upper limb pain: a general population study

    Get PDF
    BACKGROUND: Work-related neck and upper limb pain has mainly been studied in specific occupational groups, and little is known about its impact in the general population. The objectives of this study were to estimate the prevalence and population impact of work-related neck and upper limb pain. METHODS: A cross-sectional survey was conducted of 10 000 adults in North Staffordshire, UK, in which there is a common local manual industry. The primary outcome measure was presence or absence of neck and upper limb pain. Participants were asked to give details of up to five recent jobs, and to report exposure to six work activities involving the neck or upper limbs. Psychosocial measures included job control, demand and support. Odds ratios (ORs) and population attributable fractions were calculated for these risk factors. RESULTS: The age-standardized one-month period prevalence of neck and upper limb pain was 44%. There were significant independent associations between neck and upper limb pain and: repeated lifting of heavy objects (OR = 1.4); prolonged bending of neck (OR = 2.0); working with arms at/above shoulder height (OR = 1.3); little job control (OR = 1.6); and little supervisor support (OR = 1.3). The population attributable fractions were 0.24 (24%) for exposure to work activities and 0.12 (12%) for exposure to psychosocial factors. CONCLUSION: Neck and upper limb pain is associated with both physical and psychosocial factors in the work environment. Inferences of cause-and-effect from cross-sectional studies must be made with caution; nonetheless, our findings suggest that modification of the work environment might prevent up to one in three of cases of neck and upper limb pain in the general population, depending on current exposures to occupational risk

    Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways

    Get PDF
    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair

    Quantitative Comparison of Constitutive Promoters in Human ES cells

    Get PDF
    BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs

    Most Networks in Wagner's Model Are Cycling

    Get PDF
    In this paper we study a model of gene networks introduced by Andreas Wagner in the 1990s that has been used extensively to study the evolution of mutational robustness. We investigate a range of model features and parameters and evaluate the extent to which they influence the probability that a random gene network will produce a fixed point steady state expression pattern. There are many different types of models used in the literature, (discrete/continuous, sparse/dense, small/large network) and we attempt to put some order into this diversity, motivated by the fact that many properties are qualitatively the same in all the models. Our main result is that random networks in all models give rise to cyclic behavior more often than fixed points. And although periodic orbits seem to dominate network dynamics, they are usually considered unstable and not allowed to survive in previous evolutionary studies. Defining stability as the probability of fixed points, we show that the stability distribution of these networks is highly robust to changes in its parameters. We also find sparser networks to be more stable, which may help to explain why they seem to be favored by evolution. We have unified several disconnected previous studies of this class of models under the framework of stability, in a way that had not been systematically explored before

    Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    Get PDF
    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore