191 research outputs found

    A compact Time-Of-Flight detector for space applications: The LIDAL system

    Get PDF
    Abstract LIDAL (Light Ion Detector for ALTEA system) is a compact detector designed to upgrade ALTEA (Anomalous Long Term Effects on Astronauts) silicon detector apparatus, in order to study in detail the low-Z part of ions spectrum inside the International Space Station (ISS) and to enhance the Particle Identification (PID) capability of the system. The new detector is designed to trigger ALTEA and to perform Time-Of-Flight measurements. It is based on plastic scintillators for fast timing applications read by Photo-Multiplier-Tubes (PMTs). A custom Front End Electronics (FEE) has been designed to reach time resolutions less than 100 ps ( σ ) for protons. A LIDAL prototype has been developed at the University of Rome Tor Vergata to test the timing performance of the scintillators, the PMTs and of the custom FEE using the proton beam line at the TIFPA (Trento Institute for Fundamentals Physics Applications) center in Trento, Italy. The results of these tests are reported and discussed. They have also been used for a preliminary evaluation of the Particle Identification (PID) capability of the final LIDAL-ALTEA detector system in response to the ions spectra expected on-board the ISS

    Forward production of charged pions with incident π±\pi^{\pm} on nuclear targets measured at the CERN PS

    Get PDF
    Measurements of the double-differential π±\pi^{\pm} production cross-section in the range of momentum 0.5 \GeVc \leq p \le 8.0 \GeVc and angle 0.025 \rad \leq \theta \le 0.25 \rad in interactions of charged pions on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections d2σ/dpdΩ {{\mathrm{d}^2 \sigma}}/{{\mathrm{d}p\mathrm{d}\Omega}} mainly at four incident pion beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared with the GEANT4 and MARS Monte Carlo simulationComment: to be published on Nuclear Physics

    Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    Get PDF
    A measurement of the double-differential π±\pi^{\pm} production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta <2.15 \rad is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)

    Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

    Get PDF
    Measurements of the double-differential π±\pi^{\pm} production cross-section in the range of momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \leq \theta < 2.15 \rad in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data

    Measurement of the production of charged pions by protons on a tantalum target

    Get PDF
    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and 0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ{{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}} at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys. J.

    Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

    Get PDF
    The double-differential production cross-section of positive pions, d2σπ+/dpdΩd^2\sigma^{\pi^{+}}/dpd\Omega, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < pπp_{\pi} < 6.5 GeV/c and 30 mrad < θπ\theta_{\pi} < 210 mrad in the laboratory frame.Comment: 39 pages, 21 figures. Version accepted for publication by Eur. Phys. J.

    The foot (Fragmentation Of Target) experiment

    Get PDF
    Particle therapy uses proton or 12C beams for the treatment of deep-seated solid tumors. Due to the features of energy deposition of charged particles a small amount of dose is released to the healthy tissue in the beam entrance region, while the maximum of the dose is released to the tumor at the end of the beam range, in the Bragg peak region. However nuclear interactions between beam and patient tissues induce fragmentation both of projectile and target and must be carefully taken into account. In 12C treatments the main concern are long range fragments due to projectile fragmentation that release dose in the healthy tissue after the tumor, while in proton treatment the target fragmentation produces low energy, short range fragments along all the beam range. The FOOT experiment (FragmentatiOn Of Target) is designed to study these processes. Target nuclei (16O,12C) fragmentation induced by 150-250 AMeV proton beam will be studied via inverse kinematic approach. 16O,12C therapeutic beams, with the quoted kinetic energy, collide on graphite and hydrocarbons target to provide the cross section on Hydrogen. This configuration explores also the projectile fragmentation of these 16O,12C beams. The detector includes a magnetic spectrometer based on silicon pixel detectors and drift chamber, a scintillating crystal calorimeter with TOF capabilities, able to stop the heavier fragments produced, and a \u394E detector to achieve the needed energy resolution and particle identification. An alternative setup of the experiment will exploit the emulsion chamber capabilities. A specific emulsion chambers will be coupled with the interaction region of the FOOT setup to measure the production in target fragmentation of light charged fragments as protons, deuterons, tritons and Helium nuclei. The FOOT data taking is foreseen at the CNAO experimental room and will start during early 2018 with the emulsion setup, while the complete electronic detector will take data since 2019

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore