15 research outputs found

    Can we accelerate medicinal chemistry by augmenting the chemist with Big Data and artificial intelligence?

    Get PDF
    It is both the best of times and the worst of times to be a medicinal chemist. Massive amounts of data combined with machine-learning and/or artificial intelligence (AI) tools to analyze it can increase our capabilities. However, drug discovery faces severe economic pressure and a high level of societal need set against challenging targets. Here, we show how improving medicinal chemistry by better curating and exchanging knowledge can contribute to improving drug hunting in all disease areas. Although securing intellectual property (IP) is a critical task for medicinal chemists, it impedes the sharing of generic medicinal chemistry knowledge. Recent developments enable the sharing of knowledge both within and between organizations while securing IP. We also explore the effects of the structure of the corporate ecosystem within drug discovery on knowledge sharing

    Perinteisen budjetoinnin kritiikki yrityksen talouden ohjaamisessa

    No full text
    The first large scale analysis of in vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) data shared across multiple major pharma has been performed. Using advanced matched molecular pair analysis (MMPA), we combined data from three pharmaceutical companies and generated ADMET rules, avoiding the need to disclose the full chemical structures. On top of the very large exchange of knowledge, all companies involved synergistically gained approximately 20% more rules from the shared transformations. There is good quantitative agreement between the rules based on shared data compared to both individual companies’ rules and rules published in the literature. Known correlations between log <i>D</i>, solubility, in vitro clearance, and plasma protein binding also hold in transformation space, but there are also interesting exceptions. Data pools such as this allow focusing on particular functional groups and characterizing their ADMET profile. Finally the role of a corpus of robustly tested medicinal chemistry knowledge in the training of medicinal chemistry is discussed

    Boredom and Flow: A Counterfactual Theory of Attention-Directing Motivational States

    No full text

    References

    No full text

    The Greek Mirror

    No full text
    corecore