147 research outputs found

    Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks

    Get PDF
    Saturation of porous rocks with a mixture of two fluids (known as partial saturation) has a substantial effect on the seismic waves propagating through these rocks. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves, due to wave-induced fluid flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. As partial fluid saturation can occur on different length scales, attenuation due to wave induced fluid flow is ubiquitous. In particular, mesoscopic fluid flow due to heterogeneities occurring on a scale greater than porescale, but less than wavelength scale, is responsible for significant attenuation in the frequency range from 10 to 1000 Hz.Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a periodic/regular way. In 1D this corresponds to periodically alternating layering, in 3D as periodically distributed inclusions of a given shape (usually spheres). All these models yield very similar estimates of attenuation and dispersion.Experimental studies show that mesoscopic heterogeneities have less idealised distributions and that the distribution itself affects attenuation and dispersion. Therefore, theoretical models are required which would simulate the effect of more general and realistic fluid distributions.We have developed two theoretical models which simulate the effect of random distributions of mesoscopic fluid heterogeneities. The first model assumes that one fluid forms a random ensemble of spherical inclusions in a porous medium saturated by the other fluid. The attenuation and dispersion predicted by this model are very similar to those predicted for 3D periodic distribution. Attenuation (inverse quality factor) is proportional to at low frequencies for both distributions. This is in contrast to the 1D case, where random and periodically alternating layering shows different attenuation behaviour at low frequencies. The second model, which assumes a 3D continuous distribution of fluid heterogeneities, also predicts the same low-frequency asymptote of attenuation. However, the shapes of the frequency dependencies of attenuation are different. As the 3D continuous random approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental results. Further research is required in order to uncover how to relate the random functions to experimentally significant parameters

    Visual Reasoning with Multi-hop Feature Modulation

    Get PDF
    Recent breakthroughs in computer vision and natural language processing have spurred interest in challenging multi-modal tasks such as visual question-answering and visual dialogue. For such tasks, one successful approach is to condition image-based convolutional network computation on language via Feature-wise Linear Modulation (FiLM) layers, i.e., per-channel scaling and shifting. We propose to generate the parameters of FiLM layers going up the hierarchy of a convolutional network in a multi-hop fashion rather than all at once, as in prior work. By alternating between attending to the language input and generating FiLM layer parameters, this approach is better able to scale to settings with longer input sequences such as dialogue. We demonstrate that multi-hop FiLM generation achieves state-of-the-art for the short input sequence task ReferIt --- on-par with single-hop FiLM generation --- while also significantly outperforming prior state-of-the-art and single-hop FiLM generation on the GuessWhat?! visual dialogue task.Comment: In Proc of ECCV 201

    Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect

    Full text link
    We analyse the unfolding pathway of biomolecules comprising several independent modules in pulling experiments. In a recently proposed model, a critical velocity vcv_{c} has been predicted, such that for pulling speeds v>vcv>v_{c} it is the module at the pulled end that opens first, whereas for v<vcv<v_{c} it is the weakest. Here, we introduce a variant of the model that is closer to the experimental setup, and discuss the robustness of the emergence of the critical velocity and of its dependence on the model parameters. We also propose a possible experiment to test the theoretical predictions of the model, which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications" (proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016), 16 pages, 6 figure

    Jets and energy flow in photon-proton collisions at HERA

    Get PDF

    Modeling linkage disequilibrium increases accuracy of polygenic risk scores

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore