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Abstract  
 

Saturation of porous rocks with a mixture of two fluids (known as partial saturation) has 

a substantial effect on the seismic waves propagating through these rocks. In particular, 

partial saturation causes significant attenuation and dispersion of the propagating waves, 

due to wave-induced fluid flow. Such flow arises when a passing wave induces different 

fluid pressures in regions of rock saturated by different fluids. As partial fluid saturation 

can occur on different length scales, attenuation due to wave induced fluid flow is 

ubiquitous. In particular, mesoscopic fluid flow due to heterogeneities occurring on a 

scale greater than porescale, but less than wavelength scale, is responsible for significant 

attenuation in the frequency range from 10 to 1000 Hz.  

 

Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that 

fluid heterogeneities are distributed in a periodic/regular way. In 1D this corresponds to 

periodically alternating layering, in 3D as periodically distributed inclusions of a given 

shape (usually spheres). All these models yield very similar estimates of attenuation and 

dispersion.  
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Experimental studies show that mesoscopic heterogeneities have less idealised 

distributions and that the distribution itself affects attenuation and dispersion. Therefore, 

theoretical models are required which would simulate the effect of more general and 

realistic fluid distributions.   

 

We have developed two theoretical models which simulate the effect of random 

distributions of mesoscopic fluid heterogeneities. The first model assumes that one fluid 

forms a random ensemble of spherical inclusions in a porous medium saturated by the 

other fluid. The attenuation and dispersion predicted by this model are very similar to 

those predicted for 3D periodic distribution. Attenuation (inverse quality factor) is 

proportional to ω at low frequencies for both distributions. This is in contrast to the 1D 

case, where random and periodically alternating layering shows different attenuation 

behaviour at low frequencies. The second model, which assumes a 3D continuous 

distribution of fluid heterogeneities, also predicts the same low-frequency asymptote of 

attenuation. However, the shapes of the frequency dependencies of attenuation are 

different. As the 3D continuous random approach assumes that there will be a distribution 

of different patch sizes, it is expected to be better suited to modelling experimental 

results. Further research is required in order to uncover how to relate the random 

functions to experimentally significant parameters.      

 

Keywords: Poroelasticity; Patchy saturation; Mesoscopic flow; Attenuation; Phase 
velocity dispersion 
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Introduction   
 

Partial saturation of porous rock by two or more different fluids can occur in a multitude 

of geological settings. For instance, gas, oil and brine commonly share the available pore 

space in the upper part of gas capped reservoirs. Underground aquifers can become 

infiltrated by contaminating fluids. Earthquake events can induce ground water variations 

and inturn; after shocks have been linked to changes in pore fluid distribution. In order to 

better assist the interpretation of seismic data acquired for the purposes of detecting 

hydrocarbons, monitoring or tracking saltwater intrusions into ground water aquifers, or 

for analyzing recorded waveforms from earthquake events, knowledge of how partial 

fluid saturation affects elastic wave propagation is required. 

 
The propagation of elastic waves in fluid saturated porous media is usually described by 

Biot’s equations of poroelasticity [1-3]. In the low-frequency (static) limit these equations 

yield the so-called Gassmann equation [4], which expresses the undrained static bulk 

modulus of the porous medium as a function of the properties of the dry frame and the 

saturating fluid. Both Biot and Gassmann equations assume that the porous medium is 

saturated with a single Newtonian fluid (liquid or gas).  

 

Extending Biot-Gassmann theory to model wave propagation in porous media saturated 

by two or more immiscible fluids is not trivial. Immiscibility implies that the fluids are 

not dissolved into one another and a distinct fluid-fluid interface exists which separates 

each fluid [5]. When two immiscible fluids are distributed on a relatively fine scale, they 

can be regarded as a single composite fluid whose compressibility (inverse of bulk 
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modulus) is given by an average of its constituent compressibilities (using the so-called 

Wood equation [6]). In this circumstance, Gassmann’s equation can be applied to 

determine an effective bulk modulus of the porous medium, in which the fluid bulk 

modulus is now given by the composite average.  This case is often referred to as uniform 

saturation, and implies full pressure equilibration between the two fluids.  

 

This pressure equilibration can only be achieved if the frequency is sufficiently low so 

that the characteristic length of fluid diffusion in the pore space is large compared to the 

largest spatial scale of fluid mixing.  If the frequency is higher, the pressure in the two 

fluids will not have enough time to equilibrate, resulting in a higher undrained bulk 

modulus and wave velocity. Hence, the presence of two fluids in the pores (so called 

partial saturation) causes an additional dispersion and attenuation of elastic waves, which 

is related to relaxation of pore fluid pressures. The frequency dependency of wave 

velocity and attenuation in a partially saturated medium is controlled by the size, shape 

and spatial distribution of fluid pockets and permeability and elastic moduli of the solid 

matrix as well as the properties of the two fluids.  

 

In the last 30 years a numbers of models have been introduced that correspond to 

different spatial configurations of fluid pockets. Most of these models assume regular 

fluid patterns such as a cubic lattice of gas pockets of a fixed shape in a liquid-saturated 

background medium [7-9].  However, spatially regular distribution of the fluids may not 

always give an adequate representation of the real distribution. Moreover, it has been 

shown [10,11] that random and periodic 1D distributions of  two different fluids yield 
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very different attenuation/dispersion pairs. Although 1D alternating fluid distributions 

may not be realistic, this result gives an additional motivation to studies of wave 

propagation in porous media with random spatial fluid distributions. Recent results show 

that this approach is promising [12,13]. 

 

The aim of this paper is to provide a review of the different approaches to modelling 

wave propagation in partially fluid saturated porous media. First, a brief summary of the 

Biot-Gassmann theory of poroelasticity will be given. The next section will review 

models for partial fluid saturation, which utilize regular spatial fluid patterns, followed by 

our recent models, which utilize a random fluid distribution. Finally, some numerical 

examples will be given, which compare attenuation and dispersion estimates using the 

different modelling approaches. 

 
 
1. Elastic wave propagation in fully fluid saturated porous media 
  

Biot’s equations of dynamic poroelasticity [1-3] provide a general framework for 

modelling elastic wave propagation through porous fluid saturated media. The equations 

were derived using a Lagrangian view point with generalised coordinates given by the 

average solid and fluid displacements. A dissipation function was introduced, which 

depended only upon relative solid and fluid motion. Subsequently, Biot’s equations have 

been rederived using a number of different mathematical techniques, such as volume 

averaging methods [14] and homogenization for periodic structures [15-17]. All of these 

methods yield exactly the same macroscopic equations, thus confirming the validity of 

Biot’s original formulation.    
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The basic assumptions of Biot’s equations [1-3] are:  

I)  The porous rock frame is homogenenous and isotropic. It has  uniform porosity  

φ , bulk modulus dK , shear modulus 0μ , density 0ρ  and permeability κ , and 

consists of only one grain type, characterized by bulk modulus gK , shear 

modulus gμ  and density gρ .  

II) The porous rock is fully saturated by only one fluid having viscosity η, fluid 

bulk modulus fK , and density fρ .  

III) Relative motion between solid and fluid is governed by Darcy’s law.  

IV) The wavelength of the passing wave is substantially larger than the size of the 

largest grains or pores.  

 

The Biot wave equations describing average solid u and fluid displacement U can be 

written in the frequency domain (with time dependence exp( )i tω− implied) as [3] 

 

( ) ( )2 2grad div grad div 0fH Mμ μ α ω ρ ρ− + ∇ + + + =u u w u w ,   (1) 

( )2graddiv graddiv 0fM M qα ω ρ+ + + =u w u w ,     (2) 

 

where ( )φ= −w U u  represents the average fluid displacement relative to the solid,  

( ) fg φρρφρ +−= 1  is the density of the porous fluid-saturated rock, gd KK−= 1α is so 

called the Biot-Willis coefficient [18], and H, μ, and M are material properties defined 
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later in this section. Parameter ( )q ω  is a frequency dependent coefficient responsible for 

viscous and inertial coupling between the solid and fluid motion, and is given by  

 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣
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+=

f
f

iq
ωρωκ
η

φ
χρ * .        (3) 

 

Here 1χ ≤  is the tortuosity, a dimensionless parameter which is responsible for inertial 

coupling between solid and fluid motion.  The parameter *κ  is the dynamic hydraulic 

permeability, which in general, is frequency dependent and responsible for viscous 

coupling. For sufficiently low frequencies (lower than Biot’s characteristic frequency 

( )fcf πκρφη 2= ) fluid flow within the pore channels is approximated as Poiseuille. This 

means that the flow is laminar (ie the Reynolds number of the flow which  expresses the 

ratio of inertial forces to viscous forces is less than a critical Reynolds number [5]).  In 

this case the first bracketed term in the right-hand side of (3) can be neglected [19] and 

the dynamic permeability reduces to the steady-state permeability κ , giving  

 

κω
ηiq = .          (4) 

 

For most rocks and soils Biot’s characteristic frequency cf turns out to be about 105 Hz or 

higher. Therefore, for most seismic applications the low-frequency version of Biot theory 

is adequate.  
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For a homogeneous porous medium equations (1) and (2) form a system of six linear 

partial differential equations with constant coefficients for six components of two vector-

functions u and w. By considering a solution of these equations dependent upon only one 

coordinate, say x, we can reduce equations (1) and (2) to a system of six second-order 

linear ordinary differential equations with one independent variable x. The equations for  

yu , zu , yw , and zw  describe the propagation of two identical shear modes with two 

orthogonal polarisations. These shear waves are very similar in nature to classical shear 

waves in an isotropic viscoelastic medium. The remaining system of two equations for 

xu , xw  has a solution of the form  

 

0

0

exp( )x x

x x

u u
ikx

w w
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,        (5) 

 

where wavenumber k  is the root of its characteristic equation, that is, an eigenvalue of 

the linear algebraic system obtained by substituting  (5) into (1) and (2).  The 

characteristic equation is quadratic in 2k , and thus yields two pairs of complex roots +± k  

and −± k . This shows that in a porous medium there exist two types of compressional 

waves with complex velocities { }−+−+ = ,, Re kv ω  and attenuation factors (inverse quality 

factors) { } { }2
,

2
,

1
, ReIm −+−+
−
−+ = kkQ . 

 

The compressional waves are termed fast (+) and slow (-) P-waves and occur when solid 

and fluid particle motion is in phase or out of phase, respectively. The fast wave is a 

direct analog of the normal compressional wave in an elastic or viscoelastic solid, it 
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exhibits small amounts of attenuation and phase velocity dispersion (see Figure 1). On 

the other hand, the slow P- wave behaves very differently at low and high frequencies. At 

low frequencies cf f<< , the wavenumber of the slow P wave is given by 2k i Nωη κ− =  

where /N ML H= . In this frequency regime, the slow P wave is highly attenuated and is 

analogous to diffusion or heat conduction. On the other hand, at high frequencies 

cf f>>  the slow P-wave is propagatory with the propagation velocity approaching 

1/ 2
fc χ − , where fc  is sound velocity in the free fluid. 

 

For frequencies less than Biot’s characteristic frequency, the fast P and shear wave 

numbers are given by [20] 
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where ρHv =+  is the fast P wave velocity and ρμ=sv  is the shear wave velocity. 

In this frequency range the attenuation (inverse quality factors) for fast P and shear waves 

are ( ) ηρωκρ 222
0

1 1 +
−
+ −= vvQ f , and  ηρωκρ fsQ =−1 , where fMv ρα=0 . 

 

Parameter H that appears in the expression for the fast P wave velocity v+  is called the 

saturated P wave modulus, and can be written as 34μ+= KH , where K and μ  are the 

undrained bulk and shear moduli of the fluid-saturated porous medium given by the 

equations: 

MKK d
2α+= ,         (7) 

( )[ ] 1−+−= fg KKM φφα ,        (8) 
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0μμ = ,          (9) 

where the  analogous P wave modulus for a dry medium is given by 34 0μ+= dKL .  

 

Equations (7) - (9) have first been derived by Gassmann [4] and are referred to as 

Gassmann equations. For Gassmann equations to be applicable, several conditions must 

be met. The pore space within the rock must be connected so pore fluid can achieve 

equilibration. Thus, fluid pressure effects due to isolated pore spaces are not accounted 

for. Furthermore, the frequency must be sufficiently low, so that, fluid pressures induced 

by a passing wave have enough time for pressure equilibration.  

 

In essence, Gassmann equations define elastic wave velocities in fluid-saturated porous 

media in the low frequency limit. These equations are widely used in the petroleum 

industry for estimating seismic wave velocities in hydrocarbon reservoirs [21,22]. 

However, in general, seismic wave propagation often violates the quasi-static 

assumption, causing deviations from Gassmann results. In particular, wave attenuation 

and phase velocity dispersion cannot be modelled with Gassmann equation. To account 

for these effects Biot theory is often utilized.  

 

Wave attenuation and phase velocity dispersion within Biot type media is caused by 

global or macroscopic fluid flow, which is called “Biot loss”. It occurs when pore fluids 

develop spatial gradients in fluid pressure induced over the wavelength of an incident 

compressional wave. This drives fluid flow relative to the rock frame, causing wave 

energy to be lost through viscous dissipation.  
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Although Biot theory provides a mechanism for the dissipation and dispersion of elastic 

waves, it is generally accepted that it cannot adequately explain observed magnitudes of 

attenuation and dispersion, especially within the low frequency regime [23-26]. However, 

it is widely accepted that Biot theory is correct in predicting the existence of the slow P-

wave. It has been confirmed by a number of laboratory experiments [27-29].   

 

 
2. Partially fluid saturated porous media 
 

Partial fluid saturation of porous rock by multiple types of pore fluids was first proposed 

as a cause for the mismatch between experimental measurements of attenuation and 

phase velocity dispersion, and theoretical predictions given by Biot theory [1-3]. White 

[7,30] was the first to show theoretically that partial fluid saturation can cause significant 

attenuation and phase velocity dispersion. Experimental studies conducted around the 

same time [31,32] also indicated that partial fluid saturation of porous rock exhibits 

different phase velocity behaviour then fully saturated porous rock.    

 

Since then, the study of elastic wave propagation in partially fluid saturated media has 

become a field of interest in its own right, generating a number of experimental [25,33-

35], numerical [37-41] and theoretical studies designed to elucidate key features, which 

cause attenuation and phase velocity dispersion.     
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There are a number of different approaches to theoretically modelling attenuation and 

dispersion due to the presence of partial fluid saturation. Each approach emphasizes a 

particular physical aspect, thought to significantly affect attenuation and dispersion 

estimates. Broadly speaking, most approaches focus on: 

I) Pore scale distribution of immiscible fluids: These models are often called local 

or “squirt” flow models [42-45]. Attenuation and phase velocity dispersion arise 

due to fluid flow occurring between gas and liquid filled areas of the same pore 

or crack.  

II) Mesoscale distribution of immiscible fluids: fluid heterogeneities occur on the 

scale greater than the pore scale, but less than wavelength scale. Fluid 

heterogeneities can be modelled using a periodic distribution [7-9, 30] or a 

random distribution [11-13]. Attenuation and phase velocity dispersion arises 

due to induced pressure gradients on the mesoscale, which causes fluid to flow.    

III) Defining an effective pore fluid: incorporating free bubble oscillations [46-49]. 

Attenuation can arise due to viscous and thermal damping, which occurs when 

the free gas bubble oscillates in response to pressure fluctuations in the 

surrounding pore liquid.  

 

There are many different types of porous rocks, such as sandstones, limestones, shales 

etc, which are often saturated by different combinations of pore fluids, such as water, oil 

and gas. As such, in some situations, one theoretical approach may be more applicable 

than another.  

 



 13

Category I models are good for situations where porous rocks are known to contain a 

large number of very compliant grain contacts or cracks. This becomes especially 

important for laboratory studies where rock samples have undergone distortion due to 

removal from in situ conditions, which can either induce fracturing on the grain scale or 

cause the opening of otherwise closed grain contacts, due to changes in confining 

pressure [9]. Furthermore, certain rock samples or in situ rocks which contain significant 

grain-scale heterogeneities are also suitable, such as with carbonate rocks which possess 

both intergranular and intragranular porosity [50] or for sandstones having either 

imperfectly cemented grain contacts [44] or an assemblage of smaller irregularly shaped 

intra-pore minerals [51].      

 

In those circumstances, wetting fluids like water preferentially saturate grain contacts and 

cracks, whilst non-wetting fluids like gas assume larger rounder pore spaces [44]. In 

response to a passing wave, spatial gradients in fluid pressure develop which cause fluid 

to flow between grain cracks, contacts etc and rounder pore spaces. This occurs because 

cracks, contacts etc are more compliant (mechanically weaker) than rounder pore spaces.  

 

Fluid flow on the pore scale also known as local (or squirt) flow causes attenuation and 

phase velocity dispersion. The reason is that when wave frequencies are sufficiently low 

there is enough time for fluid to flow, whilst at higher frequencies there isn’t. This means 

that a porous rock at lower frequencies is less stiff than at higher frequencies resulting in 

lower wave velocities. At intermediate wave frequencies, phase velocity is frequency 

dependent and attenuation is a maximum.     
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A possible limitation of most squirt flow models is that they assume specific pore scale 

geometries. In particular, Murphy [44] assumes that the grain contact is perfectly flat and 

adjacent to a spherical pore, whilst Mavko and Nur [42] model a multitude of idealised 

geometries, such as flat, triangular and parabolic pore shapes. Thus appropriate 

application of these models requires knowledge of rock characteristics on the porescale, 

which isn’t always available, certainly for in situ applications.   

  

As it is well known that bubbles affect the acoustic properties of a liquid [52-54], 

category III models are best suited to applications where fluid-fluid interaction is 

considered important. In a free liquid the presence of bubbles has two interconnected 

effects on the acoustic properties of the liquid, which can also affect wave propagation 

when that fluid saturates porous rock. Firstly, the presence of bubbles affects the 

compressibility of the liquid; this changes the propagation velocity of waves. Secondly, 

pressure fluctuations within the liquid stemming from wave propagation, forces bubbles 

to oscillate about their equilibrium radius. This causes attenuation as wave energy is 

transferred into energy which drives bubble oscillations.     

 

On the other hand, category II models are best suited to applications where wave 

frequencies are low and the porous rock is saturated by relatively large (mesoscopic) 

fluid patches. For the rest of the review, we will focus only on category II models; 

however we wish to acknowledge the importance of both category I and III models.  
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2.1 Mesoscopic distribution of fluids  

 

Fluid heterogeneities existing on a scale which is greater than pore scale, but less than 

wavelength scale are called mesoscopic. A mesoscopic distribution of two pore fluids can 

arise due to variations in porosities, permeabilities and grain types within a porous rock. 

These features will cause pore fluids to be preferentially located in different positions, 

e.g., in a way shown in Figure 2. 

 
 

On the pore scale, numerical studies [55-59] have shown that water preferentially locates 

in grain contacts and smaller pore spaces, whilst gas prefers larger rounder pore spaces. 

Presumably, the same physics which dictates fluid distribution on the pore scale, such as 

minimization of interfacial surface area, between grains and fluids, and fluids and fluids 

will also determine fluid distribution on the mesoscale.   

    

Mesoscopic fluid distributions have been observed in recent experiments [35, 36, 60]. In 

these studies, clusters or patches of different pore fluids are distributed through out the 

porous rock samples. These experiments have revealed that the shape and distribution of 

mesoscopic fluid patches depends upon the degree of saturation and also upon the 

process of fluid saturation.   

 

X-ray microtomographic images of Cadoret et al [36] show that imbibition experiments 

where water displaces gas, produce regular patches of fluids distributed uniformly 
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through out the porous rock at high water saturations, whilst drainage or evaporative 

experiments, where the reverse fluid substitution process occurs, produce gas clusters 

distributed non-uniformly through out the porous rock at high water saturations.  

 

As drainage and imbibition produce different saturation patterns at the same level of 

saturation, differences in attenuation and phase velocity measurements can be attributed 

to differences in fluid distribution. Moreover, phase velocities measured from drainage 

experiments are appreciably higher than those from imbibition experiments [35,61] and 

similarly for attenuation measurements [36]. Thus, estimates of attenuation and phase 

velocity are affected by the distribution of immiscible fluids.   

 

2.2 Low and high frequency elastic moduli    

 

In response to a passing compressional wave, the porous framework of grains is 

compressed and rarefied on time scales imposed by the wave speed. When 

heterogeneities in saturating fluids (and or rock properties) exist, the compression or 

rarefaction of the frame causes spatial gradients in fluid pressure to develop. Providing 

that heterogeneities exist on length scales less than a wavelength, but greater than pore 

scale, gradients in fluid pressure develop on the mesoscale. This drives the so called 

mesoscopic fluid flow, which causes the attenuation of elastic energy and the dispersion 

of a propagating wave form.  
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In the limiting cases of very low and very high wave frequencies, theoretical values of 

phase velocities can be determined. For intermediate wave frequencies, phase velocities 

are frequency dependent and lie between these limiting values. Following Mavko and 

Murkerji, [62], Johnson [8], Müller and Gurevich [11], the upper and lower-frequency 

limits on phase velocities are presented below.  

 

For a porous rock having only heterogeneities in saturating fluids, Norris [63] has shown 

that the distribution of fluid pressures is governed by the diffusion equation with a 

diffusion length of    

ωη
κλ N

d = , 

where HMLN = , ω is wave frequency, and L and H are P wave moduli of the dry and 

fluid-saturated rock, respectively. 

 

When the frequency ω of the incident wave is sufficiently low and the characteristic 

patch size of fluid heterogeneities is less then the diffusion length dλ , there is enough 

time for fluid to flow and equilibrate at a constant pressure. In this limit, Wood’s law [6] 

can be applied to determine an effective fluid bulk modulus fK  given by,    

 

[ ]2211 ffW KSKSK += ,        (10)                                   

where 1S , 2S  are volume concentrations of fluids having bulk moduli 1fK , 2fK . 
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Once the effective bulk modulus of the pore fluid is defined, Gassmann relations (7)-(9) 

can be applied to estimate the low-frequency phase velocity for a partially fluid saturated 

rock (Figure 3). This quasi-static limit is known as uniform saturation or Gassmann-

Wood limit.  

 

     

Conversely, when the wave frequency ω  is sufficiently high, and the characteristic patch 

size is larger than the diffusion length dλ , there isn’t enough time for pressure 

equilibration and fluid flow effects can be ignored. In this circumstance, patches of rock 

will remain at different pressures.  

 

Application of Gassmann’s theory on individual patches allows the saturated bulk 

modulus of each patch to be determined. According to Gassmann’s equation (9), the 

saturated shear modulus of each patch is independent of fluid bulk modulus. Thus Hill’s 

[64] theorem can be applied to determine the overall saturated bulk modulus: 

 

[ ] ( ) ( )343434 2211
1 μμμ +++=+ − KSKSK H  ,    (11)                                   

 

where 1K and 2K are the saturated bulk moduli determined by applying Gassmann’s theory 

on each fluid patch (Figure 3). This high-frequency or no-flow limit is known as patchy 

or Gassmann-Hill limit. 
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The elastic moduli in both the low- and high frequency limits are given by real numbers 

and are frequency independent. Johnson [8] has shown that (1) for any non-zero 

saturation the homogeneous moduli are always smaller than those for patchy saturation, 

and (2) at intermediate frequencies the bulk modulus lies between these limits. Thus for 

any intermediate saturation level the partially fluid saturated rock exhibits frequency 

dependent phase velocity.   

 
 
  
 
2.3 Regular cell models 
 

There are a number of approaches to modelling attenuation and phase velocity dispersion 

due to mesoscopic fluid flow. Most approaches assume that heterogeneities in fluid 

content or lithology, are distributed periodically throughout the porous medium. This 

approach was proposed by White et al [30] and White [7], who was the first to illustrate 

that significant amounts of attenuation and phase velocity dispersion could arise from 

mesoscopic fluid flow. White et al [30] modelled fluid heterogeneities as periodically 

alternating layers of gas and water in a uniform solid frame. White [7] modelled fluid 

heterogeneities as a periodic array of spherical gas inclusions, embedded within a water-

saturated host (Figure 4).   

 

In these approaches an elementary composite volume consisting of porous rock saturated 

by each fluid, is considered representative of the entire periodic system of fluid 

heterogeneities. In 1D, the representative volume spans the interface between different 
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fluid layers from the centre of each layer. In 3D the representative volume is spherical 

enclosing a single gas inclusion. See figure 4.  

 

In [30] and [7] the frequency dependent complex bulk modulus is derived by considering 

the ratio of the imposed pressure amplitude to the corresponding fractional change in 

volume (including effects of fluid flow). Later these models were recast using Biot’s 

equations of dynamic poroelasticity [3] for 1D periodic layering by Norris [63] and for 

3D spherical gas inclusions by Dutta and Ode [37,38]. These studies validated the 

conclusions that wave induced fluid flow causes attenuation and phase velocity 

dispersion.   

 

Recently, two more general models for patchy saturation have been developed which also 

utilize 3D regular patch geometries [8,9]. These new models allow attenuation and phase 

velocity to be determined for arbitrary shaped fluid inclusions. However, explicit 

analytical expressions are only given for the concentric sphere geometry of White [7].   

 

 

Johnson’s APS (acoustics of patchy saturation) approach [8] was developed within the 

context of the low-frequency Biot theory. The dynamic bulk modulus ( )ωK of a partially 

fluid saturated porous rock is developed by firstly considering its response to low and 

high wave frequencies.  
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When wave frequencies are sufficiently low, the rock is “relaxed” as fluid pressure is 

equilibrated. In this limit the low frequency asymptote of ( )ωK converges to Gassmann-

Wood limits (see section 2.2). Conversely, when wave frequencies are sufficiently high, 

the rock is “unrelaxed” as fluid pressures are unequilibrated. In this limit, the high 

frequency asymptote of ( )ωK converges to Gassmann-Hill limit (see section 2.2). For 

intermediate frequencies, the dynamic response of the porous rock is constructed using a 

branching function, which ensures causality of the solution and convergence to higher 

and lower limits.   

 

In the APS approach the dependency ( )ωK  is controlled by two new geometrically 

significant parameters: the specific surface area of the inclusion/composite volume and 

an effective patch size parameter.   Utilizing this theory, Tserkovnyak and Johnson [65] 

deduced values for the specific surface area and effective patch size from experimental 

data [35,36]. They found that APS theory could be used to interpret geometrical measures 

of partial fluid saturation from attenuation and phase velocity measurements.  

 

A more general approach based broadly on similar principles was recently developed by 

Pride and Berryman [66,67]. This approach yields estimates of attenuation and phase 

velocity in a general double-porosity dual-permeability medium. The theory utilizes 

Biot’s equations [3] of poroelasticity to determine the poroelastic response of a composite 

body comprising of two distinct poroelastic phases. Pride et al [9] specialised general 

results of [66,67] to the specific case of patchy saturation, where only heterogeneities in 
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saturating fluids exist. The results for this special case are very similar to the results of 

Johnson [8]. 

 

Central to the double-porosity dual-permeability theory is a model for fluid transport 

between two poroelastic phases when induced fluid pressures are different. Fluid flow 

between phases is assumed to be proportional to the pressure difference, where the 

proportionality coefficient is frequency dependent.  First, this fluid transport coefficient is 

determined for low and high frequencies. Then, following an approach of Pride et al [68], 

a branching function is introduced which links low and high frequency limits to 

determine the overall frequency dependence of the fluid transport coefficient.  

 

 
All of the above approaches are limited to modelling attenuation and phase velocity 

dispersion due to wave induced flow arising between fluid heterogeneities which are 

identical and distributed regularly through out the porous medium. This is a consequence 

of decomposing the porous medium into identical cells (or composite volumes) 

containing fluid heterogeneities of regular shape. The use of idealised modelling 

geometries has clearly been helpful in identifying the effects of mesoscopic fluid flow. 

However, more realistic modelling geometries are required in order to evaluate how fluid 

distribution can firstly affect attenuation and phase velocity estimates and secondly to 

assist with the interpretation of experimental data.  
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3  Random patchy saturation models 
 

Attenuation and phase velocity dispersion due to a random distribution of poroelastic 

layers were first studied by Gurevich and Lopatnikov [10,69,70] by analysing Biot’s 

equations of poroelasticity with coefficients considered as random functions of one 

coordinate. The results of this analysis showed that random and periodic layering 

produces different attenuation behaviour at low frequencies. The frequency dependent 

attenuation for random layers was proportional to 21ω , whilst for periodic layers, it was 

proportional toω. Müller and Gurevich [11] specialised those results to the case of patchy 

saturation, where only heterogeneities in fluid properties existed. Shapiro and Müller [71] 

showed how such models can be used in media with spatial fluctuations of permeability 

as well as fluid properties; see also [72 ]. 

 

The above results are applicable for layered porous media, that is to 1D distributions of 

heterogeneities in fluid properties and or rock properties. Hence, the question arises 

whether discrepancies in attenuation behaviour will also be manifested in 3D 

distributions of heterogeneities, which are periodic or random. This question, along with 

the general need for modelling more of realistic distributions of heterogeneities, has 

provided the impetus for the development of models based on the concepts of random 

media.   

 

Two such approaches have recently been developed. The first approach models wave 

propagation in a porous medium with a random distribution of discrete inclusions of 

another porous medium [12,73]. The second approach considers waves in a porous 



 24

medium whose properties are smooth functions of spatial coordinates [74,75].  In the 

following we review these two approaches and show how they can be used to estimate 

elastic wave attenuation and dispersion due to patchy saturation. 

 
3.1 Discrete random model  
 

Ciz et al [12,73] have derived explicit expressions for attenuation and phase velocity 

dispersion due to a random distribution of spherical heterogeneities within porous rock 

(discrete random model or DRM). The derivation involves two main stages. In the first 

stage a problem of scattering by a single inclusion is analysed. Under the assumption of 

mesoscopic inclusion this analysis yields a closed-form solution for the scattering 

amplitude [76]. The second stage utilizes Waterman and Truell [77] theorem of multiple 

scattering to approximate the scattered wave field of a system of randomly distributed 

poroelastic inclusions [73]. 

 
3.1.1 Single inclusion scattering   
 

The problem of scattering of an elastic wave in a poroelastic material (host) by a 

spherical inclusion of another poroelastic material (inclusion) was first considered by 

Berryman [78]. When the incident wave interacts with the inclusion of radius a, it 

produces fast and slow compressional waves and a shear wave in the host (called 

scattered or reflected waves) and three of the same kinds of waves within the inclusion 

(called refracted waves), Figure 6.  
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Both the inclusion and host medium are described by Gassmann equations [4] and Biot’s 

equations of poroelasticity (see section 1). Standard boundary conditions [79] apply on 

the interface between the inclusion and host at ar = :  

 

I.      continuity of normal stress  

II. continuity of tangential stress  

III. continuity of normal average solid displacement  

IV. continuity of tangential average solid  displacement  

V. continuity of fluid pressure 

VI. continuity of average relative solid-fluid displacement  

 

Similarly to the corresponding scattering problem in elasticity [80], the solution of 

poroelastic scattering problem is sought for by expanding the reflected and refracted 

waveforms in series of spherical harmonics [78]:  

 

(1) (1)
1 2 2

0
( ) ( ) (cos )n n

r n n n
n

B Bd du h k r h k r P
k dr k dr

θ
+ −∞

+ −
= + −

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ , 

            (12) 

( ) ( )
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( ) ( ) (cos )n n

r n n n
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D Dd du j k r j k r P
dr drk k

θ
+ −∞

+ −
=

+ −

⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∑ , 

 

where, u1r  and u3r are normal displacements in the host and inclusion and +
nB  , −

nB , 

+
nD , −

nD  are coefficients corresponding to reflected and refracted fast and slow harmonics 
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of order n, )1(
nj , )1(

nh , are spherical Bessel functions of the first and third kind, (cos )nP θ  is 

the Legendre polynomial of the order n and +k , −k  are wave numbers of the fast and slow 

waves.  Similar representation is derived for the polar angle components of 

displacements, which involve scattering coefficients nC  and nE  corresponding to 

reflected and refracted shear wave. 

 

Application of the standard boundary conditions yields a 66× system of linear equations 

in terms of six unknown wave field coefficients of each order 1≥n . For order 0n =  a 

similar 44× system of linear equations in terms of 4 unknown wave field coefficients is 

obtained [78].  

 

The general infinite series formulation of Berryman [78] gives a complete solution of the 

single scattering problem for an inclusion of arbitrary size (larger than the pore size) and 

for any frequency. Ciz and Gurevich [76] showed that this solution can be greatly 

simplified if the frequency is small compared to Biot’s characteristic frequency, and the 

inclusion is mesoscopic. In particular, they showed that at most three first terms of the 

series are significant in this case, and gave explicit analytical expressions for these terms.  

 

Furthermore, it was shown that the term with 2n =  is proportional to the difference in 

shear modulus between the inclusion and the host medium. Thus in the specific case 

where the inclusion differs from the host medium by the fluid properties only, this term 

can be neglected and the scattering coefficient of the fast compressional wave is given by  

the sum of the zero-order and first-order terms with coefficients [12]: 
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In these expressions, ak±± =ξ , a prime (or no prime) above a parameter denotes within 

the inclusion (or host), whilst ρ  refers to the effective density of the porous rock.  

  

3.1.2 Random distribution of inclusions 
 

Waterman and Truell [77] showed that the velocity and attenuation of waves propagating 

in a medium containing a random distribution of identical inclusions can be related to the 

amplitude of the waves scattered from a single inclusion (Figure 7). According to their 

theory, the complex effective wave number is given by:  

 

2 2 2

2 2

2 (0) 2 ( )1effk f f
k k k

πυ πυ π

+ + +

⎛ ⎞ ⎡ ⎤ ⎡ ⎤
= + −⎜ ⎟ ⎢ ⎥ ⎢ ⎥

⎝ ⎠ ⎣ ⎦ ⎣ ⎦
,      (15)  

 

where k vω+ +=  is the wave number of the fast P-wave in the host, υ  is the density or 

number of scatterers per unit volume, and (0)f ,  ( )f π  are forward and backward 

scattering amplitudes which are related to scattering coefficients by 

( )
0 0

1 1(0) , ( ) nn
n n

n n
f i B f i B

ik ik
π

∞ ∞
+ +

= =+ +

= = −∑ ∑ ,     (16) 
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For random distribution of mesoscopic fluid patches the scattering amplitudes are 

determined by substituting scattering coefficients (13) and (14) into (16).  

 

Incorporating a weak scattering approximation and neglecting quadratic terms in υ  

reduces the effective wave number (15)  to 

1 2

2 2
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k k
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+ +
+ +

⎡ ⎤ ⎡ ⎤
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Real and imaginary components of effk , yield the effective phase velocity effv and 

dimensionless attenuation (inverse quality factor) Q-1  
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where ( )34 3 aδ υ π= is the fractional volume concentration of the inclusions. 

 
The discrete random model discussed here is limited to the spherical shape of the patches, 

and in this respect is similar to regular patch models [7- 9]. Unlike these models however, 

DRM is based on the scattering theory, and thus implies random distribution of the fluid 

patches. Another advantage of the DRM is it that gives explicit closed-form expressions 

for the frequency dependency of attenuation and dispersion. On the other hand, since the 

phase velocity and attenuation estimates (18) and (19) are based on an essentially single 
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scattering approximation of Waterman and Truell, they are limited to small 

concentrations of inclusions. The range of admissible concentrations depends on the 

contrasts in fluid properties between the inclusion and the host medium. Numerical 

comparison of the DRM with other models will be presented in section 4. 

 

 
3.2 Continuous random model 
 
 

All the partial saturation models described so far assume a fixed shape (and size) of fluid 

patches. In real rocks however we expect fluid patches (bubbles) to have a broad 

distribution of shapes and sizes. Since effect of small patches can be adequately described 

by the Gassmann-Wood homogeneous saturation model (7)-(10), see [81], we can 

consider the partially saturated medium as a homogenous porous frame saturated with a 

composite fluid with smoothly varying properties. Such a medium can be described by 

Biot’s equations of poroelasticity with poroelastic coefficients which are continuous 

random functions of position. This approach was first used to model wave propagation in 

randomly layered poroelastic media [10, 11]. This was done using the so-called method 

of statistical smoothing [82], widely used in the theory of waves in random media. 

Recently Müller and Gurevich [74,75] used a similar approach to develop a general 

model of wave attenuation and dispersion in 3D randomly inhomogeneous porous media. 

The method of statistical smoothing is precise for small contrasts in physical properties.  

 

According to Müller and Gurevich [74,75], the complex P-wave number in a 

heterogeneous porous solid is given by 
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( ) ( ) ⎟
⎠
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12 exp1 drrikrrBkkkeff ,     (20) 

with dimensionless coefficients given by,  

( )222
2

2

1 2
2 MMLMLLH

ML σσσα
+−=Δ  , 2

2
2

2 22 MMLL H
M

H
L σασ +=Δ ,   (21) 

where Hk ρω=+ , Nik κωη=− ,are the fast and slow P-wave numbers for the 

background medium, ( )rB  is the spatial correlation function and xxσ  are normalised 

variances of the different elastic moduli.   

 

For partial fluid saturation, only variances in fluid modulus M exist, so that 

0== LMLL σσ , 2 2
2 2MMM Hα σΔ =  and ( )1 2L HΔ = Δ . This reduces the complexity of 

the dimensionless coefficients in (21). To obtain the fast and slow P wave numbers for 

the average background media, it is necessary to calculate the average properties of the 

fluid modulus M, and fluid viscosity η. This is done by taking the saturation-weighted 

average of each property: 2211 SXSXX += .  

 

Using (20), the effective complex P-wave modulus can be written as,  

( ) ( ) ( )
2

0

2
120 exp1 ⎟

⎠
⎞⎜

⎝
⎛ Δ−Δ−= ∫

∞

−− drrikrrBkHH eff ω ,     (22) 

where 0H is the average background P-wave modulus determined from Gassmann’s 

equation using the average fluid modulus M . Real and imaginary components of (23) 

yield the effective phase velocity { } ρeffeff Hv Re=  and specific attenuation (inverse 

quality factor) { } { }effeffeff HHQ ReIm1 =−  respectively. 
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The theoretical low- and high-frequency limits on P wave moduli obtained from (22) are 

( )2
0 21lowH H= −Δ  and ( )2

120 1 Δ+Δ−= HH high , respectively. For small contrast in fluid 

properties 1MMσ <<  these moduli approach theoretical Gassmann-Wood WH  and 

Gassmann-Hill HH   bounds as given by equations (6)-(10) and (11) respectively: 

( )low W MMH H o σ= +  and ( )high H MMH H o σ= + . In other words, the moduli given by 

equation (22) are asymptotically consistent with Gassmann-Wood and Gassmann-Hill 

limits for small contrast in fluid modulus.  However, in partially saturated rocks the 

variation in fluid properties is often large, resulting in significant deviation of predicted 

low- and high-frequency moduli from the theoretical limits.  

 

To make the model consistent with the theoretical limits, we introduce a scaling function 

[11]: 

( ) ( )
1 eff lowH W

SC W
high low W

H HH HH H
H H H

ω
ω

⎛ ⎞−−
= + ×⎜ ⎟⎜ ⎟−⎝ ⎠

.      (23) 

The new complex modulus ( )SCH ω  predicted by equation (23) behaves similarly to that 

predicted by (22) but is consistent with the theoretical limits. We call this scaled model 

the continuous random model (CRM) of patchy saturation. 

 

Dispersion and attenuation in CRM depends on the correlation function B(r), which in 

turn is determined by the spatial distribution of saturating fluids. To obtain closed-form 

expressions one needs to specify this correlation function. In particular, for an 
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exponential correlation function ( ) ( )brrB −= exp  the effective complex P-wave 

modulus in this case becomes   

( )
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20 1
1 ⎟
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⎞
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⎜
⎝

⎛

−
Δ

−Δ−=
−

−

bik
bk

HH eff ω ,       (24)  

where b is the correlation length, which characterizes a characteristic length of the 

inhomogeneities. 

  

To compare dispersion and attenuation estimates obtained from the random continuous 

distribution of fluids and discrete inclusion based methods, it is necessary to relate 

fundamental qualities which characterize each type of media. Random media is 

characterized by variance, correlation function and correlation length, whilst discrete 

media is characterized by inclusion radius, volume concentration and specific area. We 

have derived an approximate relationship by equating the power expansion of the 

exponential correlation function to the correlation function defined by Torquato [83] for a 

random distribution of non-overlapping spherical inclusions. By doing this we have 

obtained the relationship vsSSb 214= , which allows the correlation length b to be 

computed from fluid saturations 1S , 2S and specific volume 323 civ Rrs = , where ci Rr ,  are 

inclusion and composite volume radius, respectively.  

 

 
4. Numerical examples 
 
 
The numerical examples below illustrate attenuation and phase velocity dispersion 

predicted using several different 3D modelling approaches. In particular, the periodic 
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models of White, [7]; Johnson [8] and Pride and Berryman [9] will be compared with the 

random models. Typical physical properties we use in the following examples are given 

in Table 1.  

                 
 

Earlier approaches to modelling attenuation due to partial fluid saturation utilized Biot’s 

equations of poroelasticity with an effective fluid bulk modulus defined by Wood’s law 

[31]. For 15% air inclusions within an otherwise water saturated host rock of porosity 

0.08, estimates of attenuation are obtained using White’s concentric sphere model and 

Biot-Wood theory (BW).  Figure 8 shows that the peak magnitude of attenuation for BW 

theory is several orders of magnitude less than that predicted by White’s model [7]. In 

particular, the peak frequency for BW theory is in the higher frequency bandwidths, 

whilst White’s model is in the low (seismic) frequency bandwidth.  

 

The models predict different magnitudes of attenuation at different frequencies as the 

dominating attenuation mechanisms are physically different. In White’s model 

attenuation is a consequence of wave induced fluid flow occurring between the inclusion 

and composite host volume. This arises as the inclusion and host develop different fluid 

pressures. Where as, in BW theory it is assumed that both porefluids are equilibrated at a 

common fluid pressure, and thus fluid flow only occurs between the troughs and peaks of 

the incident wave.  

 

The next example models attenuation and phase velocity using the different periodic 

models of White [7], Johnson [8] and Pride et al [9].  For 5% of air inclusions within an 
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otherwise water saturated host rock of porosity 0.15, attenuation and phase velocity are 

shown in Figure 9 and 10, respectively. The figures show that there is a good agreement 

between all periodic models for estimates of attenuation and phase velocity. In particular, 

Figure 9 shows that attenuation at low frequencies is proportional toω, whilst for high 

frequencies it is proportional to 21−ω . Figure 10, shows that phase velocities converge to 

low (Gassmann-Wood) and high frequency (Gassmann-Hill) limits and at intermediate 

frequencies the phase velocities are bounded by those limits. The periodic models [7-9] 

estimates of attenuation and dispersion are all in good agreement because they all share 

the same geometrical arrangement and distribution of the same pore fluids. Firstly, 

attenuation will be similar because it is dominated by concentration and contrast between 

the pore fluids (which is the assumed the same in this example). Secondly, they all share 

the same effective patch size, thus relaxation/unrelaxation will occur at similar 

frequencies.  

 

The next example models attenuation and phase velocity due to a random distribution of 

spherical inclusions (using the DRM model above) and a periodic distribution of 

spherical inclusions (using White’s model [7] as the reference model). In Figure 11, 

attenuation and phase velocity are shown when there are small contrasts in saturating 

fluids (a) 0.1% heavy gas  and (b) 10% heavy gas within an otherwise water saturated 

rock. In both cases, the more compressible fluids are modelled as inclusions. In (c) the 

more compressible fluid is modelled as the host saturating fluid for the situation of large 

contrasts between fluids. Figure 11, top row (a) shows good agreement between 

attenuation and phase velocity estimates for small contrasts in fluid properties when the 
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volume concentration of the included phase is small. Figure 11, middle row (b) shows a 

larger volume concentration of the included fluid results in different attenuation and 

phase velocity estimates. In particular, the phase velocity estimate of the DRM does not 

converge to the low frequency Gassmann-Wood limit.  This is a consequence of the weak 

scattering approximation employed in the models derivation.  

     

When the more compressible fluid is modelled as the host saturating fluid, the DRM can 

handle larger contrasts in fluid properties. In (c), attenuation and phase velocity 

dispersion is modelled for 50% water inclusions within an otherwise air saturated host 

rock of porosity 0.08. There is very good agreement between attenuation and phase 

velocity estimates. Figure11, shows that the attenuation behaviour of periodic and 

random distributions of fluid inclusions is proportional to ω for low frequencies and 

proportional to 21−ω for high frequencies. Providing the weak scattering conditions are 

met, there is good agreement between attenuation and phase velocity estimates for 

periodic and random distributions of fluid inclusions.  

 

 

The next example models attenuation and phase velocity using the continuous random 

model (CRM) and White’s model. When comparing CRM to inclusion based models, it is 

necessary to formulate some type of relationship which allows significant parameters that 

characterise each approach to assume equivalent measures. We assume that specific 

surface area can be used as a means of relating the two formulations and that the 

continuous random distribution of fluids is described by an exponential correlation 
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function. In Figure 12 two types of models are compared with a water saturated host 

rock, (a) when there are 35% of air inclusions and (b) when there are 35% of heavy gas 

inclusions. Figure 12, shows that the CRM estimates attenuation magnitudes which are of 

the same magnitude as the periodic model and that attenuation behaviour has the same 

frequency behaviour at low and high frequencies. The attenuation peak is broader for the 

CRM model and the bandwidth over which phase velocity dispersion occurs is larger for 

the CRM model. This is expected as CRM implicitly assumes that there is a range of 

patch sizes and thus larger patch sizes will become unrelaxed at lower frequencies than 

smaller patch sizes. Figure 12 also shows that the CRM model can handle large and small 

contrasts in fluid properties equally well.   

 

Figure 13, shows attenuation estimates obtained using the 3D and 1D variations of CRM 

with the periodic reference model of White [7]. These estimates are compared with 

experimental measurements obtained from Murphy [84]. The figure shows that the 3D 

and 1D variations of CRM produce the closest estimates of attenuation. The reason why 

the 1D random model explains the data best is that in the experimental setup of Murphy 

the fluid distribution is likely to be given by a realization of a strongly anisotropic (quasi-

1D) random medium. That is, the pore fluid distribution is likely to have greater variance 

in 1D then across 3D.                   
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Conclusions 

 

The partial saturation of a porous rock by different types of fluids can cause the 

attenuation and dispersion of seismic waves. This effect is a consequence of wave-

induced flow, which arises when a passing wave induces different fluid pressures in 

regions of rock saturated by different fluid types. The presence of localized spatial 

gradients in fluid pressure causes fluid to flow and the viscous dissipation of energy. 

Depending on the size of fluid clusters these gradients may occur on the pore scale or on 

the mesoscale (a scale that is larger than the pore size but smaller than wavelength scale). 

Pore-scale fluid heterogeneity causes local flow, while dissipation caused by mesoscale 

fluid distribution is called mesoscopic. 

 

The most common approach to modelling mesoscopic attenuation and dispersion is based 

on the assumption that the medium can be divided into identical cells containing 

regularly shaped fluid patches of the two fluids. 1D heterogeneities are modelled using 

periodically alternating layers, whilst in 3D an array of spherical inclusions are 

positioned at regular lattice positions.  

 

Real distributions of fluid in the pore space of the rock are unlikely to form regular 

patterns. An alternative approach is to consider a random distribution of fluids. For the 

1D case (horizontally layered medium) this was done by assuming that fluid properties 

are random functions of one spatial coordinate, and by analysing the solution of Biot’s 

equations of poroelasticity with random coefficients. This analysis shows that frequency 
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dependence of attenuation caused by randomly stratified fluid distribution is very 

different from that caused by periodically layered distribution. In particular, at low 

frequencies inverse Q  is proportional to 1/ 2ω  for random layering, whilst to ω  for 

periodic layering. 

 

Recently, two models have been proposed that attempt to simulate three-dimensional 

random distributions of fluids. The first model assumes that one fluid forms a random 

ensemble of spherical inclusions in a porous medium saturated by the other fluid. 

However, despite the fact that the distribution of fluid patches is random, the resulting 

attenuation and dispersion are essentially the same as for a periodic distribution of 

spherical fluid clusters. However this agreement may be the result of the limitation of the 

random model to low concentration of inclusions, where inclusion interactions are 

negligible.  

 

Another model proposed by the present authors considers the fluid properties as 

continuous random functions of position in 3D. This approach, which can be considered 

as an extension of the 1D random model to three dimensions, leads to frequency 

dependency of attenuation whose low and high frequency asymptotes are the same as in 

models with periodic patches, but whose shape is significantly different. This difference 

is the consequence of the fact that the continuous random model implies a broad range of 

fluid patches, whereas models with fixed-shaped inclusions (periodic or random) the fluid 

patch size (as well as shape) is fixed. 
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Comparisons with experimental data appear to suggest that the continuous random model 

is more adequate than models with regular distribution of fluid patches. However, further 

research is required to relate the parameters of natural fluid distributions (both in the 

laboratory and field experiments) to the parameters of random functions used in the 

model. 
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Appendix: Symbols and terms 
 
a inclusion radius  
b correlation length  

0A amplitude of incident wave 
( )rB correlation function  
+
nB , −

nB  fast and slow wave reflected scattering coefficient   

nC reflected shear wave scattering coefficient of order n 
+
nD , −

nD fast and slow wave refracted scattering coefficient  

nE refracted shear wave scattering coefficient of order n 
(0)f , ( )f π  forward and backward scattering amplitudes eq(16) 

cf Biot characteristic frequency  
)1(

nh spherical Bessel function of the third kind of order n 
H saturated P wave modulus  

0H average background medium saturated P wave modulus 

HH  saturated P wave modulus defined by Gassmann-Hill limit 

WH  saturated P wave modulus defined by Gassmann-Wood limit 

effH effective medium saturated P wave modulus eq (22), eq(24) 

lowH  low frequency limit of effective P wave modulus   

highH  high frequency limit of effective P wave modulus 

SCH  scaled P wave modulus eq (23)    

i  1−  
)1(

nj spherical Bessel function of the first kind of order n 

effk effective wave number eq(15), eq (17) 

effk effective wave number eq (20) 

+k , −k  fast and slow P wave numbers eq(6), eq( 
K  fluid saturated eq (7) 

1K , 2K bulk modulus of patch saturated with fluid type 1, 2 

dK dry rock frame bulk modulus  

fK , 1fK , 2fK  fluid bulk modulus 

gK  grain bulk modulus  

HK  bulk modulus derived from Hill’s theorem eq(11) 

WK  bulk modulus derived from Wood’s theorem eq (10) 
L  dry P wave modulus 
M  fluid modulus (8) 
( )θcosnP  Legendre polynomial of order n  

q coupling coefficient between fluid and solid eq(3) , eq(4) 



 41

1−
+Q , 1−

−Q  attenuation factors fast and slow P waves 

ir cR radius of inclusion and composite volume 

vs specific area of fluid patches 

1S , 2S volume concentration of fluid type1 and type 2 
u average solid displacement 

1ru , 3ru normal displacements in the host and inclusion eq (12) 
U average fluid displacement 
+v , −v fast and slow  P-wave velocities  

effv effective P wave velocity  
w average relative fluid displacement  
 
 
Greek letters 
 
α  Biot Willis coefficient 
δ  fractional volume concentration of inclusions 

1Δ , 2Δ dimensionless coefficients eq(21) 

+ξ fast wavenumber (host)  ×  inclusion radius  

_ξ slow wavenumber (host)  ×  inclusion radius 
'
+ξ  fast wavenumber (inside inclusion)  ×  inclusion radius 
'
−ξ slow wavenumber (inside inclusion)  ×  inclusion radius 

η fluid viscosity  
κ permeability  

*κ dynamic hydraulic permeability  
dλ diffusion length 
μ saturated shear modulus eq(9)  

0μ unsaturated shear modulus 

gμ grain shear modulus 
υ  is the density or number of scatterers per unit volume 
ρ effective density of fluid saturated rock  

0ρ rock frame density 

fρ fluid density 

gρ rock grains density 
2
LLσ 2

MMσ variance of dry P wave modulus and fluid modulus  
2
LMσ  cross-variance of dry P wave modulus and fluid modulus 

φ  porosity 
χ tortuosity 
ω angular frequency  
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Figure Captions:  
 
Figure 1: Biot attenuation (inverse quality factor) and dispersion for porous rock 
containing 100 % water (top) and heavy gas (bottom). Very modest amounts of 
attenuation and dispersion are predicted at high frequencies      
 
Figure 2: Mesoscale distribution of two different pore fluids within a porous rock having 
lithological variations. The scale of fluid heterogeneities is greater then pore scale, but 
much less then wavelength scale.  
 
Figure 3: Lower and upper bounds on P-wave velocities for partially water saturated 
porous rocks with light gas or heavy gas inclusions. 
 
Figure 4: Periodic geometries (a) for 1d layers showing composite volume (b) for 3d, 
spherical inclusions are distributed in an array (c) the composite volume used to 
approximate the periodic array 
 
Figure 5: (a) A random distribution of spherical inclusions of another poroelastic 
material. (b) a continuous random distribution of poroelastic materials  
 
Figure 6: Shows the incident plane fast compressional wave and the reflected and 
refracted waves 
 
Figure 7: Showing a compressional wave incident on a random distribution of spherical 
inclusions of another poroelastic material. 
 
Figure 8: Attenuation due to mesoscopic fluid flow, given by White’s concentric sphere 
model and macroscopic flow (Biot theory using Wood’s law to define an effective fluid 
bulk modulus). 15% air inclusions within a water saturated porous rock of porosity 15% 
is modelled.   
 
Figure 9: Attenuation estimates modelled using the periodic models of White [7], 
Johnson [8] and Pride et al [9]. Very good agreement between all approaches for the case 
of 5 % air inclusions in an otherwise water saturated host rock of porosity 15%. The 
inclusion radius is 25 cm.  
 
Figure 10: Phase velocity dispersion modelled using the periodic models of White [7], 
Johnson [8] and Pride et al [9]. Very good agreement between all approaches for the case 
of 5 % air inclusions in an otherwise water saturated host rock of porosity 15%. The 
inclusion radius is 25 cm.  
 
Figure 11: Attenuation and dispersion estimates from heavy gas inclusions within an 
otherwise water saturated porous rock of porosity 0.08. White’s model (–), Ciz and 
Gurevich (--) (a) has an inclusion concentration of 0.1 % (b) has an inclusion 
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concentration of 10%. (c) attenuation and dispersion when the more compressible fluid is 
modelled as the host saturating fluid. In this case, water inclusions are modelled within an 
air saturated host rock. Good agreement is seen between periodic and random estimates.  
 
Figure 12: Attenuation and phase velocity dispersion estimates for the periodic model of 
White 1975 and the random continuous model. White’s model (–), Toms et al 2005 (--) 
(a) has 35 % air (b) has 35 % of heavy gas, within an otherwise water saturated porous 
rock of porosity 12 %.   
 
Figure 13: Shows attenuation estimates of the CRM model and the periodic reference 
model of White [7] against the experimental data of Murphy [84]. The CRM models 
produce closer estimates of attenuation then does the reference periodic model.  
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Figure 1: Biot attenuation (inverse quality factor) and dispersion for porous rock 
containing 100 % water (top) and heavy gas (bottom). Very modest amounts of 
attenuation and dispersion are predicted at high frequencies      
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Figure 2: Mesoscale distribution of two different pore fluids within a porous rock having 
lithological variations. The scale of fluid heterogeneities is greater then pore scale, but 
much less then wavelength scale 
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Figure 3: Lower and upper bounds on P-wave velocities for partially water saturated 
porous rocks with light gas or heavy gas inclusions. 
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Figure 4: Periodic geometries (a) for 1d layers showing composite volume (b) for 3d, 
spherical inclusions are distributed in an array (c) the composite volume used to 
approximate the periodic array 
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Figure 5: (a) A random distribution of spherical inclusions of another poroelastic 
material. (b) a continuous random distribution of poroelastic materials  
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Figure 6: Shows the incident plane fast compressional wave and the reflected and 
refracted waves 
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Figure 7: Showing a compressional wave incident on a random distribution of spherical 
inclusions of another poroelastic material. 
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Figure 8: Attenuation due to mesoscopic fluid flow, given by White’s concentric sphere 
model and macroscopic flow (Biot theory using Wood’s law to define an effective fluid 
bulk modulus). 15% air inclusions within a water saturated porous rock of porosity 15% 
is modelled.    
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Figure 9: Attenuation estimates modelled using the periodic models of White [7], 
Johnson [8] and Pride et al [9]. Very good agreement between all approaches for the case 
of 5 % air inclusions in an otherwise water saturated host rock of porosity 15%. The 
inclusion radius is 25 cm.  
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Figure 10: Phase velocity dispersion modelled using the periodic models of White [7], 
Johnson [8] and Pride et al [9]. Very good agreement between all approaches for the case 
of 5 % air inclusions in an otherwise water saturated host rock of porosity 15%. The 
inclusion radius is 25 cm.  
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Figure 11: Attenuation and dispersion estimates from heavy gas inclusions within an 
otherwise water saturated porous rock of porosity 0.08. White’s model (–), Ciz and 
Gurevich (--) (a) has an inclusion concentration of 0.1 % (b) has an inclusion 
concentration of 10%. (c) attenuation and dispersion when the more compressible fluid is 
modelled as the host saturating fluid. In this case, water inclusions are modelled within an 
air saturated host rock. Good agreement is seen between periodic and random estimates.  
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Figure 12: Attenuation and phase velocity dispersion estimates for the periodic model of 
White 1975 and the random continuous model. White’s model ( –), Toms et al 2005 (--) 
(a) has 35 % air (b) has 35 % of heavy gas, within an otherwise water saturated porous 
rock of porosity 12 %.   
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Figure 13: Shows attenuation estimates of the CRM model and the periodic reference 
model of White [7] against the experimental data of Murphy [84]. The CRM models 
produce closer estimates of attenuation then does the reference periodic model.  
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Table List: 
 

Table 1: shows the physical properties used in modelling attenuation and phase velocities  
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Table 1: shows the physical properties used in modelling attenuation and phase velocities  
 
 
 
 
Rock   Fluids  Fluids  

K 7  
GPa 

Kfw     
water 

2.25 
GPa 

Kf  
h. gas 

0.25 
GPa  

μ 9  
GPa 

ρw 990 
Kg/m3 

ρ 400  
Kg/m3 

Kg 35  
GPa 

ηw 1e-3  
Pa s 

η 6e-5  
Pa s 

ρg 2650 
Kg/m3 

Kfa    
air 

0.1  
MPa 

Kf    
l. gas  

0.1  
GPa 

φ Varying  ρga 100  
Kg/m3 

ρg 100  
Kg/m3 

κ 1e-13  
m2 

η2a 1e-5  
Pa s 

η2 3e-5  
Pa s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


