107 research outputs found

    Standardising the clinical assessment of coronal knee laxity

    Get PDF
    Clinical laxity tests are used for assessing knee ligament injuries and for soft tissue balancing in total knee arthroplasty. This study reports the development and validation of a quantitative technique of assessing collateral knee laxity through accurate measurement of potential variables during routine clinical examination. The hypothesis was that standardisation of a clinical stress test would result in a repeatable range of laxity measurements.Non- invasive infrared tracking technology with kinematic registration of joint centres gave real-time measurement of both coronal and sagittal mechanical tibiofemoral alignment. Knee flexion, moment arm and magnitude of the applied force were all measured and standardised. Three clinicians then performed six knee laxity examinations on a single volunteer using a target moment of 18Nm. Standardised laxity measurements had small standard deviations (within 1.1°) for each clinician and similar mean values between clinicians, with the valgus laxity assessment (mean of 3°) being slightly more consistent than varus (means of 4° or 5°).The manual technique of coronal knee laxity assessment was successfully quantified and standardised, leading to a narrow range of measurements (within the accuracy of the measurement system). Minimising the subjective variables of clinical examination could improve current knowledge of soft tissue knee behaviour

    Successful ACL reconstruction with a variant of the pes anserinus

    Get PDF
    An anatomical variant of the pes anserinus encountered during anterior cruciate ligament reconstructive surgery which has not been previously described is discussed. During routine harvesting, the sartorius fascia was incised and the semitendinosus and gracilis tendons were identified. At the distal portion, it was noted that each tendon gave off an additional tendinous slip. The slip from the semitendinosus tendon had attached to the gracilis tendon and vice versa, thereby creating a double pes anserinus. This variant was used to construct the graft, and at 1 year review the patient had returned to full sporting activities with no complications encountered

    CLICK:One-step generation of conditional knockout mice

    Get PDF
    Abstract Background CRISPR/Cas9 enables the targeting of genes in zygotes; however, efficient approaches to create loxP-flanked (floxed) alleles remain elusive. Results Here, we show that the electroporation of Cas9, two gRNAs, and long single-stranded DNA (lssDNA) into zygotes, termed CLICK (CRISPR with lssDNA inducing conditional knockout alleles), enables the quick generation of floxed alleles in mice and rats. Conclusions The high efficiency of CLICK provides homozygous knock-ins in oocytes carrying tissue-specific Cre, which allows the one-step generation of conditional knockouts in founder (F0) mice

    Biomechanics and anterior cruciate ligament reconstruction

    Get PDF
    For years, bioengineers and orthopaedic surgeons have applied the principles of mechanics to gain valuable information about the complex function of the anterior cruciate ligament (ACL). The results of these investigations have provided scientific data for surgeons to improve methods of ACL reconstruction and postoperative rehabilitation. This review paper will present specific examples of how the field of biomechanics has impacted the evolution of ACL research. The anatomy and biomechanics of the ACL as well as the discovery of new tools in ACL-related biomechanical study are first introduced. Some important factors affecting the surgical outcome of ACL reconstruction, including graft selection, tunnel placement, initial graft tension, graft fixation, graft tunnel motion and healing, are then discussed. The scientific basis for the new surgical procedure, i.e., anatomic double bundle ACL reconstruction, designed to regain rotatory stability of the knee, is presented. To conclude, the future role of biomechanics in gaining valuable in-vivo data that can further advance the understanding of the ACL and ACL graft function in order to improve the patient outcome following ACL reconstruction is suggested

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    Get PDF
    Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis

    Preferential Loading of the ACL Compared With the MCL During Landing

    No full text
    corecore