301 research outputs found

    Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    Get PDF
    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription–polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury

    Selecting an Anti-Malarial Clinical Candidate from Two Potent Dihydroisoquinolones

    Get PDF
    BACKGROUND: The ongoing global malaria eradication campaign requires development of potent, safe, and cost-effective drugs lacking cross-resistance with existing chemotherapies. One critical step in drug development is selecting a suitable clinical candidate from late leads. The process used to select the clinical candidate SJ733 from two potent dihydroisoquinolone (DHIQ) late leads, SJ733 and SJ311, based on their physicochemical, pharmacokinetic (PK), and toxicity profiles is described. METHODS: The compounds were tested to define their physicochemical properties including kinetic and thermodynamic solubility, partition coefficient, permeability, ionization constant, and binding to plasma proteins. Metabolic stability was assessed in both microsomes and hepatocytes derived from mice, rats, dogs, and humans. Cytochrome P450 inhibition was assessed using recombinant human cytochrome enzymes. The pharmacokinetic profiles of single intravenous or oral doses were investigated in mice, rats, and dogs. RESULTS: Although both compounds displayed similar physicochemical properties, SJ733 was more permeable but metabolically less stable than SJ311 in vitro. Single dose PK studies of SJ733 in mice, rats, and dogs demonstrated appreciable oral bioavailability (60-100%), whereas SJ311 had lower oral bioavailability (mice 23%, rats 40%) and higher renal clearance (10-30 fold higher than SJ733 in rats and dogs), suggesting less favorable exposure in humans. SJ311 also displayed a narrower range of dose-proportional exposure, with plasma exposure flattening at doses above 200 mg/kg. CONCLUSION: SJ733 was chosen as the candidate based on a more favorable dose proportionality of exposure and stronger expectation of the ability to justify a strong therapeutic index to regulators

    3D Spheroids of Human Primary Urine-Derived Stem Cells in the Assessment of Drug-Induced Mitochondrial Toxicity

    Get PDF
    Mitochondrial toxicity (Mito-Tox) risk has increased due to the administration of several classes of drugs, particularly some life-long antiretroviral drugs for HIV+ individuals. However, no suitable in vitro assays are available to test long-term Mito-Tox (≄4 weeks). The goal of this study is to develop a 3D spheroid system of human primary urine-derived stem cells (USC) for the prediction of drug-induced delayed Mito-Tox. The cytotoxicity and Mito-Tox were assessed in 3D USC spheroids 4 weeks after treatment with antiretroviral drugs: zalcitabine (ddC; 0.1, 1 and 10 ”M), tenofovir (TFV; 3, 30 and 300 ”M) or Raltegravir (RAL; 2, 20 and 200 ”M). Rotenone (RTNN, 10 ”M) and 0.1% DMSO served as positive and negative controls. Despite only mild cytotoxicity, ddC significantly inhibited the expression of oxidative phosphorylation enzyme Complexes I, III, and IV; and RAL transiently reduced the level of Complex IV. A significant increase in caspase 3 and ROS/RNS level but a decrease in total ATP were observed in USC treated with ddC, TFV, RAL, and RTNN. Levels of mtDNA content and mitochondrial mass were decreased in ddC but minimally or not in TFV- and RAL-treated spheroids. Thus, 3D USC spheroid using antiretroviral drugs as a model offers an alternative platform to assess drug-induced late Mito-Tox

    Evaluation of Arylimidamides DB1955 and DB1960 as Candidates against Visceral Leishmaniasis and Chagas' Disease: In Vivo Efficacy, Acute Toxicity, Pharmacokinetics, and Toxicology Studies

    Get PDF
    Arylimidamides (AIAs) have shown outstanding in vitro potency against intracellular kinetoplastid parasites, and the AIA 2,5-bis[2-(2-propoxy)-4-(2-pyridylimino)aminophenyl]furan dihydrochloride (DB766) displayed good in vivo efficacy in rodent models of visceral leishmaniasis (VL) and Chagas' disease. In an attempt to further increase the solubility and in vivo antikinetoplastid potential of DB766, the mesylate salt of this compound and that of the closely related AIA 2,5-bis[2-(2-cyclopentyloxy)-4-(2-pyridylimino)aminophenyl]furan hydrochloride (DB1852) were prepared. These two mesylate salts, designated DB1960 and DB1955, respectively, exhibited dose-dependent activity in the murine model of VL, with DB1960 inhibiting liver parasitemia by 51% at an oral dose of 100 mg/kg/day × 5 and DB1955 reducing liver parasitemia by 57% when given by the same dosing regimen. In a murine Trypanosoma cruzi infection model, DB1960 decreased the peak parasitemia levels that occurred at 8 days postinfection by 46% when given orally at 100 mg/kg/day × 5, while DB1955 had no effect on peak parasitemia levels when administered by the same dosing regimen. Distribution studies revealed that these compounds accumulated to micromolar levels in the liver, spleen, and kidneys but to a lesser extent in the heart, brain, and plasma. A 5-day repeat-dose toxicology study with DB1960 and DB1955 was also conducted with female BALB/c mice, with the compounds administered orally at 100, 200, and 500 mg/kg/day. In the high-dose groups, DB1960 caused changes in serum chemistry, with statistically significant increases in serum blood urea nitrogen, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase levels, and a 21% decrease in body weight was observed in this group. These changes were consistent with microscopic findings in the livers and kidneys of the treated animals. The incidences of observed clinical signs (hunched posture, tachypnea, tremors, and ruffled fur) were more frequent in DB1960-treated groups than in those treated with DB1955. However, histopathological examination of tissue samples indicated that both compounds had adverse effects at all dose levels.This work was supported by a grant from the Bill and Melinda Gates Foundation, contract N01-AI-60011 with SRI International from the National Institute of Allergy and Infectious Diseases, FIOCRUZ, and by Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) PPSUS, APQ1, and Pensa-Rio (16/2009-E-26/110-313/2010), Conselho Nacional Desenvolvimento científico e Tecnológico (CNPq), PDTIS/FIOCRUZ, and PROEP. We thank the other members of the Consortium for Parasitic Drug Development for helpful discussions

    An in vivo-in vitro alkaline DNA unwinding assay for hepatic DNA damage: Comparison with the alkaline sucrose gradient centrifugation technique

    Full text link
    An in vivo-in vitro alkaline DNA unwinding assay for single-strand breaks and/or alkalilabile lesions in hepatic DNA is described. The assay involves isolation of hepatic nuclei from mice, alkaline denaturation and unwinding of hepatic DNA, separation of single- and double-stranded DNA by hydroxylapatite batch chromatography, and quantitation of DNA in chromatographic fractions by a fluorometric assay. The method allows for the sensitive detection of hepatic DNA damage following in vivo administration of xenobiotics. Using this procedure, DNA fragmentation was demonstrated in alkali after administration of as little as 0.5 mg/kg of N-nitrosodimethylamine (DMN) to male B6C3F1 mice. A comparison of this technique with a similar alkaline sucrose density gradient centrifugation assay demonstrated comparable limits of sensitivity for the two procedures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24653/1/0000066.pd

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 20, Revision 3 (FGE.20Rev3): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30

    Get PDF
    <p>The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate five flavouring substances in the Flavouring Group Evaluation 304, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that the three substances [FL-no: 16.117, 16.123 and 16.125] do not give rise to safety concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. For the remaining two candidate substances [FL-no: 16.118 and 16.124], no appropriate NOAEL was available and additional data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all five candidate substances.</p&gt

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 06, Revision 4 (FGE.06Rev4 ): Straight - and branched - chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids and esters from chemical groups 1, 3 and 4

    Get PDF
    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 56 flavouring substances in the Flavouring Group Evaluation 6, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision is made due to the inclusion of six additional flavouring substances, (-)-3,7-dimethyl-6-octen-1-ol [FL-no: 02.229], dec-4(cis)-enal [FL-no: 05.137], neral [FL-no: 05.170], trans-3,7-dimethylocta-2,6-dienal (geranial) [FL-no: 05.188], trans-3-hexenyl formate [FL-no: 09.562] and cis-3-hexenyl 2-methylbutanoate [FL-no: 09.854]. None of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern and available data on metabolism and toxicity. The Panel concluded that the 56 substances [FL-no: 02.125, 02.138, 02.152, 02.170, 02.175, 02.176, 02.195, 02.201, 02.222, 02.229, 02.234, 05.061, 05.082, 05.137, 05.143, 05.170, 05.174, 05.188, 05.203, 05.217, 05.218, 05.220, 05.226, 08.074, 08.100, 08.102, 09.341, 09.368, 09.377, 09.562, 09.567, 09.569, 09.572, 09.575, 09.612, 09.638, 09.640, 09.643, 09.672, 09.673, 09.674, 09.831, 09.838, 09.854, 09.855, 09.871, 09.872, 09.884, 09.885, 09.897, 09.898, 09.928, 09.937, 09.938, 09.939 and 09.950] do not give rise to safety concern at their levels of dietary intake, estimated on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 56 candidate substances

    Evaluation of Arylimidamides DB1955 and DB1960 as Candidates against Visceral Leishmaniasis and Chagas' Disease: In Vivo Efficacy, Acute Toxicity, Pharmacokinetics, and Toxicology Studies

    Get PDF
    ABSTRACT Arylimidamides (AIAs) have shown outstanding in vitro potency against intracellular kinetoplastid parasites, and the AIA 2,5-bis[2-(2-propoxy)-4-(2-pyridylimino)aminophenyl]furan dihydrochloride (DB766) displayed good in vivo efficacy in rodent models of visceral leishmaniasis (VL) and Chagas' disease. In an attempt to further increase the solubility and in vivo antikinetoplastid potential of DB766, the mesylate salt of this compound and that of the closely related AIA 2,5-bis[2-(2-cyclopentyloxy)-4-(2-pyridylimino)aminophenyl]furan hydrochloride (DB1852) were prepared. These two mesylate salts, designated DB1960 and DB1955, respectively, exhibited dose-dependent activity in the murine model of VL, with DB1960 inhibiting liver parasitemia by 51% at an oral dose of 100 mg/kg/day × 5 and DB1955 reducing liver parasitemia by 57% when given by the same dosing regimen. In a murine Trypanosoma cruzi infection model, DB1960 decreased the peak parasitemia levels that occurred at 8 days postinfection by 46% when given orally at 100 mg/kg/day × 5, while DB1955 had no effect on peak parasitemia levels when administered by the same dosing regimen. Distribution studies revealed that these compounds accumulated to micromolar levels in the liver, spleen, and kidneys but to a lesser extent in the heart, brain, and plasma. A 5-day repeat-dose toxicology study with DB1960 and DB1955 was also conducted with female BALB/c mice, with the compounds administered orally at 100, 200, and 500 mg/kg/day. In the high-dose groups, DB1960 caused changes in serum chemistry, with statistically significant increases in serum blood urea nitrogen, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase levels, and a 21% decrease in body weight was observed in this group. These changes were consistent with microscopic findings in the livers and kidneys of the treated animals. The incidences of observed clinical signs (hunched posture, tachypnea, tremors, and ruffled fur) were more frequent in DB1960-treated groups than in those treated with DB1955. However, histopathological examination of tissue samples indicated that both compounds had adverse effects at all dose levels

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 2 (FGE.10Rev2): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing an additional oxygenated functional group and lactones from chemical groups 9, 13 and 30

    Get PDF
    • 

    corecore