902 research outputs found

    The Bailey Point Region and Other Muskox Refugia in the Canadian Arctic: A Short Review

    Get PDF
    The muskox (Ovibos moschatus) is widely distributed over much of arctic Canada but only at a few locations do their densities remain high and populations relatively stable. These refugia constitute the most favourable muskox ranges in the Canadian Arctic Archipelago .... Refugia for muskoxen in the High Arctic include lowlands on eastern Axel Heiberg Island in the Mokka Fiord region, the lowlands of northeastern Devon Island, and the Bailey Point region of Melville Island .... All of those regions historically have supported high densities of muskoxen from time to time but the Bailey Point region must be considered the best habitat for muskoxen in the Canadian High Arctic. ..

    Extending the D'Alembert Solution to Space-Time Modified Riemann-Liouville Fractional Wave Equations

    Full text link
    In the realm of complexity, it is argued that adequate modeling of TeV-physics demands an approach based on fractal operators and fractional calculus (FC). Non-local theories and memory effects are connected to complexity and the FC. The non-differentiable nature of the microscopic dynamics may be connected with time scales. Based on the Modified Riemann-Liouville definition of fractional derivatives, we have worked out explicit solutions to a fractional wave equation with suitable initial conditions to carefully understand the time evolution of classical fields with a fractional dynamics. First, by considering space-time partial fractional derivatives of the same order in time and space, a generalized fractional D'Alembertian is introduced and by means of a transformation of variables to light-cone coordinates, an explicit analytical solution is obtained. To address the situation of different orders in the time and space derivatives, we adopt different approaches, as it will become clear throughout the paper. Aspects connected to Lorentz symmetry are analyzed in both approaches.Comment: 8 page

    An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies

    Get PDF
    Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols

    Breakdown of correspondence in chaotic systems: Ehrenfest versus localization times

    Full text link
    Breakdown of quantum-classical correspondence is studied on an experimentally realizable example of one-dimensional periodically driven system. Two relevant time scales are identified in this system: the short Ehrenfest time t_h and the typically much longer localization time scale T_L. It is shown that surprisingly weak modification of the Hamiltonian may eliminate the more dramatic symptoms of localization without effecting the more subtle but ubiquitous and rapid loss of correspondence at t_h.Comment: 4 pages, 5 figures, replaced with a version submitted to PR

    Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter

    Full text link
    We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth (see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions. Theorem B: The epsilon expansion of a hypergeometric function with one half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are ratios of polynomials. Some extra materials are available via the www at this http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 24 pages, latex with amsmath and JHEP3.cls; v2: some typos corrected and a few references added; v3: few references added

    Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics

    Get PDF
    International audienceThis chapter proposes a framework for dealing with two problems related to the analysis of shapes: the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and Zolésio [8], we consider the characteristic functions of the subsets of ℝ2 and their distance functions. The L 2 norm of the difference of characteristic functions and the L∞ and the W 1,2 norms of the difference of distance functions define interesting topologies, in particular that induced by the well-known Hausdorff distance. Because of practical considerations arising from the fact that we deal with image shapes defined on finite grids of pixels, we restrict our attention to subsets of ℝ2 of positive reach in the sense of Federer [12], with smooth boundaries of bounded curvature. For this particular set of shapes we show that the three previous topologies are equivalent. The next problem we consider is that of warping a shape onto another by infinitesimal gradient descent, minimizing the corresponding distance. Because the distance function involves an inf, it is not differentiable with respect to the shape. We propose a family of smooth approximations of the distance function which are continuous with respect to the Hausdorff topology, and hence with respect to the other two topologies. We compute the corresponding Gâteaux derivatives. They define deformation flows that can be used to warp a shape onto another by solving an initial value problem. We show several examples of this warping and prove properties of our approximations that relate to the existence of local minima. We then use this tool to produce computational de.nitions of the empirical mean and covariance of a set of shape examples. They yield an analog of the notion of principal modes of variation. We illustrate them on a variety of examples

    Measurement of the Probability of Gluon Splitting into Charmed Quarks in Hadronic Z Decays

    Get PDF
    We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore