177 research outputs found

    Fasciolopsis buski (Digenea: Fasciolidae) from China and India may represent distinct taxa based on mitochondrial and nuclear ribosomal DNA sequences

    Get PDF
    Sequences of primers used to amplify fragments of Fasciolopsis buski mitochondrial genome. (DOCX 17 kb

    Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi

    Get PDF
    Developments in nanotechnology are leading to a rapid proliferation of new materials that are likely to become a source of engineered nanoparticles (ENPs) to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi. Interactions of ENPs with natural organic matter have to be considered as well, as those will alter the ENPs aggregation behavior in surface waters or in soils. Cells of plants, algae, and fungi possess cell walls that constitute a primary site for interaction and a barrier for the entrance of ENPs. Mechanisms allowing ENPs to pass through cell walls and membranes are as yet poorly understood. Inside cells, ENPs might directly provoke alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of ENPs depend on their chemical and physical properties and may include physical restraints (clogging effects), solubilization of toxic ENP compounds, or production of reactive oxygen species. Many questions regarding the bioavailability of ENPs, their uptake by algae, plants, and fungi and the toxicity mechanisms remain to be elucidate

    Intracellular Uptake: A Possible Mechanism for Silver Engineered Nanoparticle Toxicity to a Freshwater Alga Ochromonas danica

    Get PDF
    The behavior and toxicity of silver engineered nanoparticles (Ag-ENs) to the mixotrophic freshwater alga Ochromonas danica were examined in the present study to determine whether any other mechanisms are involved in their algal toxicity besides Ag+ liberation outside the cells. Despite their good dispersability, the Ag-ENs were found to continuously aggregate and dissolve rapidly. When the initial nanoparticle concentration was lower than 10 µM, the total dissolved Ag+ concentration ([Ag+]T) in the suspending media reached its maximum after 1 d and then decreased suggesting that Ag+ release might be limited by the nanoparticle surface area under these conditions. Furthermore, Ag-EN dissolution extent remarkably increased in the presence of glutathione. In the Ag-EN toxicity experiment, glutathione was also used to eliminate the indirect effects of Ag+ that was released. However, remarkable toxicity was still observed although the free Ag+ concentration in the media was orders of magnitude lower than the non-observed effect concentration of Ag+ itself. Such inhibitive effects were mitigated when more glutathione was added, but could never be completely eliminated. Most importantly, we demonstrate, for the first time, that Ag-ENs can be taken in and accumulated inside the algal cells, where they exerted their toxic effects. Therefore, nanoparticle internalization may be an alternative pathway through which algal growth can be influenced

    GABA, progesterone and zona pellucida activation of PLA2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa

    Get PDF
    AbstractWe investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process

    Serum levels of cytokines in water buffaloes experimentally infected with Fasciola gigantica

    Get PDF
    Fasciola gigantica infection in water buffaloes causes significant economic losses especially 27 in developing countries. Although modulation of the host immune response by cytokine 28 neutralization or vaccination is a promising approach to control infection with this parasite, our 29 understanding of cytokine's dynamic during F. gigantica infection is limited. To address this, 30 we quantified the levels of serum cytokines produced in water buffaloes following experimental 31 infection with F. gigantica. Five buffaloes were infected via oral gavage with 500 viable F. 32 gigantica metacercariae and blood samples were collected from buffaloes one week before 33 infection and for 13 consecutive weeks thereafter. The levels of 10 cytokines in serum samples 34 were simultaneously determined using ELISA. F. gigantica failed to elicit the production of 35 various pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-12, and 36 IFN-γ. On the other hand, evidence of a Th2 type response was detected, but only early in the 37 course of parasite colonization and included modest increase in the levels of IL-10 and IL-13. 38 The results also revealed suppression of the immune responses as a feature of chronic F. 39 gigantica infection in buffaloes. Taken together, F. gigantica seems to elicit a modest Th2 40 response at early stage of infection in order to downregulate harmful Th1- and Th17-type 41 inflammatory responses in experimentally infected buffaloes. The full extent of anti-F. 42 gigantica immune response and its relation to pathogenesis requires further study

    Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Get PDF
    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii

    Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton

    Get PDF
    The unique properties of engineered nanoparticles (ENs) that make their industrial applications so attractive simultaneously raise questions regarding their environmental safety. ENs exhibit behaviors different from bulk materials with identical chemical compositions. Though the nanotoxicity of ENs has been studied intensively, their unintended environmental impacts remain largely unknown. Herein we report experimental results of EN interactions with exopolymeric substances (EPS) from three marine phytoplankton species: Amphora sp., Ankistrodesmus angustus and Phaeodactylum tricornutum. EPS are polysaccharide-rich anionic colloid polymers released by various microorganisms that can assemble into microgels, possibly by means of hydrophobic and ionic mechanisms. Polystyrene nanoparticles (23 nm) were used in our study as model ENs. The effects of ENs on EPS assembly were monitored with dynamic laser scattering (DLS). We found that ENs can induce significant acceleration in Amphora sp. EPS assembly; after 72 hours EN-EPS aggregation reached equilibrium, forming microscopic gels of ∼4–6 µm in size. In contrast, ENs only cause moderate assembly kinetic acceleration for A. angustus and P. tricornutum EPS samples. Our results indicate that the effects of ENs on EPS assembly kinetics mainly depend on the hydrophobic interactions of ENs with EPS polymers. The cycling mechanism of EPS is complex. Nonetheless, the change of EPS assembly kinetics induced by ENs can be considered as one potential disturbance to the marine carbon cycle

    Genome-Wide Analysis of Histone H3 Lysine9 Modifications in Human Mesenchymal Stem Cell Osteogenic Differentiation

    Get PDF
    Mesenchymal stem cells (MSCs) possess self-renewal and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms such as histone modifications could be critical for determining the fate of stem cells. In this study, full human genome promoter microarrays and expression microarrays were used to explore the roles of histone modifications (H3K9Ac and H3K9Me2) upon the induction of MSC osteogenic differentiation. Our results revealed that the enrichment of H3K9Ac was decreased globally at the gene promoters, whereas the number of promoters enriched with H3K9Me2 was increased evidently upon osteogenic induction. By a combined analysis of data from both ChIP-on-chip and expression microarrays, a number of differentially expressed genes regulated by H3K9Ac and/or H3K9Me2 were identified, implicating their roles in several biological events, such as cell cycle withdraw and cytoskeleton reconstruction that were essential to differentiation process. In addition, our results showed that the vitamin D receptor played a trans-repression role via alternations of H3K9Ac and H3K9Me2 upon MSC osteogenic differentiation. Data from this study suggested that gene activation and silencing controlled by changes of H3K9Ac and H3K9Me2, respectively, were crucial to MSC osteogenic differentiation

    Spinal Astrocytic Activation Is Involved in a Virally-Induced Rat Model of Neuropathic Pain

    Get PDF
    Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN

    Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set

    Get PDF
    A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP=0- and a gravitonlike Higgs boson with JP=2+, assuming for both a mass of 125GeV/c2. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of s=1.96TeV, and correspond to an integrated luminosity of 9.45fb-1. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125GeV/c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state
    corecore