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Abstract We investigated whether GABA activates phospholi-
pase A2 (PLA2) during acrosomal exocytosis, and if the MEK-
ERK1/2 pathway modulates PLA2 activation initiated by
GABA, progesterone or zona pellucida (ZP). In guinea pig sper-
matozoa prelabelled with [14C]arachidonic acid or [14C]choline
chloride, GABA stimulated a decrease in phosphatidylcholine
(PC), and release of arachidonic acid and lysoPC, during exocy-
tosis. These lipid changes are indicative of PLA2 activation and
appear essential for exocytosis since inclusion of aristolochic
acid (a PLA2 inhibitor) abrogated them, along with exocytosis.
GABA activation of PLA2 seems to be mediated, at least in part,
by diacylglycerol (DAG) and protein kinase C since inclusion of
the DAG kinase inhibitor R59022 enhanced PLA2 activity and
exocytosis stimulated by GABA, whereas exposure to stauro-
sporine decreased both. GABA-, progesterone- and ZP-induced
release of arachidonic acid and exocytosis were prevented by
U0126 and PD98059 (MEK inhibitors). Taken together, our
results suggest that PLA2 plays a fundamental role in agonist-
stimulated exocytosis and that MEK-ERK1/2 are involved in
PLA2 regulation during this process.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Gamma-aminobutyric acid (GABA) is the major inhibitory

neurotransmitter in the mammalian central nervous systems

(CNS), although GABAergic systems are also found in various

peripheral tissues, including the female reproductive organs.
Abbreviations: ATA, aristolochic acid; DAG, diacylglycerol; ERK,
extracellular signal-regulated kinase; GABA, c-aminobutyric acid;
LCa2+-MCM, low-calciumminimal capacitationmedium;MAP kinase,
mitogen-activated protein kinase;MEK,MAPkinase (ERK) kinase; PC,
phosphatidylcholine; PKA, protein kinase A; PKC, protein kinase C;
PLA2, phospholipase A2; ZP, zona pellucida
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GABA specific receptor sites and a GABA uptake system

are present in the female genital tract of the rat and rabbit

[1], and the human uterus, oviduct and ovary [2]. In addition,

high concentrations of GABA exist in seminal plasma [3,4].

This evidence suggests that GABA may exert a regulatory role

in mammalian sperm function [5].

GABA binding sites have been reported in sperm mem-

branes [6–8] and the possible presence of a GABA receptor/

Cl� channel complex has been postulated in spermatozoa

based on the detection of a GABAA receptor subunit in human

sperm cells [9]. Further studies have revealed various GABAA

receptor subunits [10–12], along with a GABAB receptor

[13,14] in rat spermatozoa.

The physiological significance of GABA role(s) in spermato-

zoa has recently received considerable attention. GABA can

mimic and potentiate the action of progesterone in inducing

capacitation of ram [15], guinea pig and human [16] spermato-

zoa. GABA is also capable of inducing acrosomal exocytosis

of mouse [17,18], rat [14] and human [19] spermatozoa, and

inhibitors of GABA receptors block initiation of acrosomal

exocytosis [9,17,18].

Stimulation of acrosomal exocytosis with zona pellucida

(ZP) or progesterone leads to activation of phospholipases

and subsequent production of lipid messengers and active

metabolites. Among the phospholipases activated, phospho-

inositide- and phosphatidylcholine (PC)-specific phospholipa-

ses C play a crucial role in the generation of diglycerides

that are essential for downstream events [17,20]. In addition,

progesterone and ZP trigger activation of phospholipase A2

(PLA2) and release of fatty acids and lysophospholipids

important for membrane fusion [21,22]. GABA can stimu-

late activation of phospholipases C [17,23] but it is not

known whether it triggers activation of PLA2. In addition,

there is still little information regarding mechanisms regulat-

ing PLA2 activation in spermatozoa; evidence suggests that

both DAG-PKC and cAMP-PKA pathways may be in-

volved [22,24].

One possible mechanism regulating PLA2 activation in

sperm cells involves a Mitogen Activated Protein (MAP)

kinase pathway, particularly that involving the highly con-

served extracellular-signal regulated kinase (ERK1/2) module

[24]. This ERK module is also involved in functions other than

activation of transcription factors (reviewed in [25–27]) and is
blished by Elsevier B.V. All rights reserved.
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known to act in the regulation of PLA2 in somatic cells [28–

31]. Components of the MAP kinase kinase (MEK)-ERK1/2

pathway have been identified in mammalian spermatozoa

[32,35]. However, evidence is not unanimous in favour of its

role in acrosomal exocytosis, with some studies failing to de-

tect evidence [33,34], and others supporting it [35–37].

The present study was designed to (a) characterize sperm

PLA2 activation in response to GABA and analyze whether

its activation is necessary for GABA-induced exocytosis, (b)

examine if GABA-induced activation of PLA2 involves regula-

tion by the DAG-PKC pathway, and (c) explore whether the

MEK-ERK1/2 kinase pathway regulates PLA2 activation trig-

gered by GABA and compare this response with that elicited

by progesterone or ZP.
Fig. 1. Concentration-dependence of GABA-induced acrosomal exo-
cytosis in guinea pig spermatozoa. Spermatozoa were preincubated at
38.5 �C under 5% CO2 in air in LCa2+-MCM for 6 h, washed,
resuspended in similar medium with 2 mM Ca2+, and exposed to
GABA for 15 min. Acrosomal exocytosis was assessed by phase-
contrast microscopy. Results are means ± S.E.M. (n = 3). (a) Signif-
icantly different from control (P < 0.0002); (b) significantly different
from 2 lM or 10 lM GABA (P < 0.04); (c) significantly different from
5 lM or 15 lM GABA (P < 0.02); (d) significantly different from
2. Materials and methods

2.1. Reagents and incubation media
[1-14C]Arachidonic acid (56 mCi/mM; toluene solution), and

[methyl-14C]choline chloride (55 mCi/mM) were purchased form
Amersham Pharmacia Biotech, UK, Ltd (Little Chalfont, UK).
Chemicals (reagent grade) and reagents were purchased from Sigma
(St Louis, MO, USA) and Shanghai Chemical Reagents Co. (Shanghai,
China). Percoll was obtained from Amersham Biosciences AB
(Uppsala, Sweden). Organic solvents were of reagent grade and were
obtained from Shanghai Chemical Reagents Co. Arachidonic acid,
phospholipids and neutral lipids used as standards were purchased
from Sigma. Staurosporine, 1,4-diamino-2,3-dicyano-1,4-bis(2-amin-
ophenylthio)butadiene (U0126), 1,4-diamino-2,3-dicyano-1,4-bis(meth-
ylthio)butadiene (U0124), and 2-amino-3-methoxyflavone (PD98059)
were purchased from Calbiochem (La Jolla, CA, USA).
The medium used throughout this study was a low-Ca2+ minimal

capacitation medium (LCa2+-MCM) previously described [16].
Although no Ca2+ was added to this medium, the Ca2+ concentration
was 23 lM when measured. This low-Ca2+ medium induces capacita-
tion of guinea pig spermatozoa under in vitro conditions but does
not support acrosomal exocytosis [21,38]. When required, 2 mM CaCl2
were added.
10 lM GABA (P = 0.01).
2.2. Collection and preparation of spermatozoa
White and black retired male guinea pigs (750 ± 30 g body weight)

were purchased from the Center for Experimental Animals, Zhejiang
University, and housed in environmentally controlled rooms with 12-
h light/dark cycles, and maintained at approximately 20 ± 2 �C. Food
and water were provided ad libitum. Animals were killed with CO2.
The caudae epididymides and vasa deferentia were incised and their
contents were milked into LCa2+-MCM. Spermatozoa (final concen-
tration: 2–3 · 107 cells/ml) were incubated for 1 h in a capped jar in
a shaking water bath (Wagen, Japan Ferrotec, Hangzhou, China)
and then incubated at 38.5 �C under 5% CO2 in air. Sperm viability
at this stage was 90–95% as estimated using a trypan blue exclusion test
and phase contrast microscopy.
Fig. 2. Effect of the PLA2 inhibitor aristolochic acid (ATA) on
acrosomal exocytosis induced by GABA in guinea pig spermatozoa.
Spermatozoa were capacitated in LCa2+-MCM medium for 6 h
washed, resuspended in MCM with 2 mM Ca2+, exposed to various
concentrations of ATA for 5 min, and then treated with 5 lm GABA
for 15 min before examination for the occurrence of acrosomal
exocytosis. Results are means ± S.E.M. from three experiments.
Letters above bars indicate statistically significant differences: (a)
different from control (P < 0.01); (b) different from GABA 5 lM
(P < 0.05); (c) different from GABA 5 lM (P < 0.01).
2.3. Capacitation and labelling of spermatozoa
Spermatozoa were labelled with 2 lCi [methyl-14C]choline chloride/

ml or 0.5 lCi [14C]arachidonic acid/ml by incubating them for 5–6 h at
35.8 �C under 5% CO2 in air. During this period, the viability of sper-
matozoa remained constant (85–90%) as estimated using the trypan
blue exclusion test and phase contrast microscopy. Spermatozoa were
washed through a Percoll gradient (30–55–85% Percoll in LCa2+-
MCM) by centrifugation for 18 min at 700 · g. After centrifugation,
the supernatant was removed leaving in each tube about 0.3 ml of
the infranatant (85% Percoll) in which the spermatozoa were loosely
pelleted. The pellet was diluted 1:10 (v/v) with LCa2+-MCM and cen-
trifuged again at 400 · g for 8 min. After centrifugation the superna-
tant was removed and spermatozoa were diluted in Ca2+-containing
MCM (final concentration: 2–3 · 107 cells/ml). At this stage, 85% via-
ble cells were found.
2.4. Isolation and preparation of zona pellucida
Female guinea pigs (21–22 days old) of the White-with-Flower-spots

strain were killed with CO2 and the ovaries removed. The ZP were iso-
lated as described previously [21] and were solubilized at 60 �C for 1 h
before use.

2.5. Experimental design
Stocks solutions of progesterone (15 mM), staurosporine (10 mM),

MEK inhibitors U0126 (1.3 mM), and its inactive control U0124
(1.3 mM), and PD98059 (5 mM) were prepared in DMSO. When
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diluted, final concentrations of DMSO were 1% (v/v) or lower and they
did not affect sperm motility or acrosomal integrity. Stocks of aristol-
ochic acid (ATA, sodium salt, 10 mM) were made up weekly in triple-
distilled water and were kept at �20 �C. GABA stock (10 mM) was
prepared daily in 0.16 M NaCl and further diluted in the same solvent.
For experiments, spermatozoa preincubated for 6 h (i.e. capacitated)

were resuspended in MCM containing 2 mM Ca2+ (final concentra-
tion: 2–3 · 107 cells/ml) and exposed to test reagents (or their solvents
as controls) for 5–15 min at 38.5 �C under 5% CO2/air. Spermatozoa
were then treated with GABA (1–15 lM), progesterone (5 or 10 lM)
or ZP (1 ZP/ll), incubated for another 15 min under similar conditions
and then lipids were extracted and analyzed. To test effects on acroso-
mal exocytosis, unlabelled capacitated spermatozoa were first exposed
to reagents (or their solvents as controls), were then treated with
GABA (5 lM), progesterone (5 or 10 lM) or ZP (1 ZP/ll)(or left
untreated, as control) and examined using phase contrast microscopy.
A total of at least 600 spermatozoa were counted to assess acrosomal
exocytosis in each sample.
2.6. Lipid analyses in labelled spermatozoa
For quantification of arachidonic acid, incubations of spermato-

zoa prelabelled with [14C]arachidonic acid were terminated by the
addition of chilled chloroform/methanol (1:2, v/v) and lipids were
extracted and analyzed as described previously [21]. To measure
Fig. 3. Effect of the PLA2 inhibitor ATA on changes in (A) arachidonic acid,
or progesterone in guinea pig spermatozoa. Spermatozoa were capacitated a
washed and resuspended in medium with 2 mM Ca2+, and incubated with or
GABA or 5 lM progesterone for 15 min before lipid extraction and analysi
occurrence of acrosomal exocytosis. Results are the means ± S.E.M. of three
statistically significant differences: (a) significantly different from control
(P < 0.005).
changes in lysoPC and PC, incubations of spermatozoa prelabelled
with [14C]choline chloride were terminated and lipids extracted as
described [21].

2.7. Statistical analyses
Data are expressed as means ± S.E.M. For statistical analyses, data

were transformed [log10 for lipid levels and arcsin
p
(percent of acro-

some-reacted cells ‚ 100) for exocytosis] and comparisons were made
with one-way ANOVAs and Fisher�s post-hoc tests. Values of
P < 0.05 were regarded as statistically significant.
3. Results

3.1. Stimulation of acrosomal exocytosis by GABA

To examine the effect of GABA on acrosomal exocytosis,

spermatozoa were preincubated in LCa2+-MCM for 6 h,

washed and then resuspended in MCM with 2 mM Ca2+.

Spermatozoa were stimulated without or with 1–15 lM
GABA for 15 min. The stimulatory effect was biphasic, with

a significant, concentration-dependent increase in the pro-

portion of spermatozoa undergoing acrosomal exocytosis

with GABA concentrations of up to 10 lM (Fig. 1). Further
(B) lysoPC, (C) PC, and (D) acrosomal exocytosis stimulated by GABA
nd labelled with [14C]arachidonic acid or [14C]choline chloride for 5 h,
without 80 lM ATA for 5 min. They were then stimulated with 5 lM
s. Unlabelled spermatozoa were similarly treated and assessed for the
to five different experiments. For each graph, letters above bars indicate
(P < 0.01); (b) significantly different from GABA or progesterone
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increases in GABA concentrations resulted in significantly

lower responses.
3.2. ATA inhibits GABA- and progesterone-induced PLA2

activity and acrosomal exocytosis

To test whether GABA-stimulated acrosomal exocytosis

involves PLA2 activation, capacitated guinea pig spermato-

zoa were pre-exposed to ATA, an effective inhibitor of

sperm PLA2 [21,39], before stimulation. Inclusion of ATA

significantly inhibited GABA-induced acrosomal exocytosis

in a concentration-dependent fashion (Fig. 2). This com-

pound, when used alone, did not affect sperm motility or

integrity.

We explored further if GABA-triggered responses involve

PLA2 activation by quantifying changes in PC, arachidonic

acid and lysoPC. To this end, prelabelled, capacitated sperma-

tozoa were stimulated with GABA in the presence of Ca2+

and, after 15 min of additional incubation, lipids were ex-

tracted and analyzed. After stimulation with GABA, levels

of arachidonic acid and lysoPC were significantly higher than

those seen in controls (Fig. 3A and B). In parallel samples, a

decrease in PC was observed after GABA stimulation

(Fig. 3C). The lipid changes induced by GABA were accompa-

nied by acrosomal exocytosis in a large proportion of cells

(Fig. 3D). Inclusion of 80 lM ATA abrogated all these re-
Fig. 4. Effect of the DAG kinase inhibitor R59022 on GABA-induced c
Spermatozoa were labelled with [14C]arachidonic acid for 5 h in LCa2+-MC
unlabelled and treated similarly. The DAG kinase inhibitor (DAGKI) R590
extended for 15 min before lipid extraction and quantification (A, arachidoni
Results are the means ± S.E.M. of six (arachidonic acid) or three (lysoPC, P
control (P < 0.01 to P < 0.0001); (b) significantly different from GABA or D
sponses (Fig. 3A–D), further confirming the involvement of

PLA2.

We compared responses to GABA with those seen after

exposure to progesterone. After progesterone (5 lM) stimula-

tion, levels of arachidonic acid and lysoPC increased, and

PC levels decreased (Fig. 3A–C) and a large proportion of

sperm cells experienced acrosomal exocytosis (Fig. 3D). As

seen with GABA, inclusion of 80 lM ATA inhibited the re-

sponses triggered by progesterone (Fig. 3A–D).
3.3. GABA-induced activation of PLA2 is modulated by the

DAG-PKC pathway

To test whether PLA2 activation stimulated by GABA in-

volves any role for DAG, we used the DAG kinase inhibitor

R59022 and examined if in its presence, which results in an in-

crease in endogenous levels of DAG [21,40], there were

changes in PLA2 activation and exocytosis. Inclusion of

R59022 (2 lM) before GABA resulted in an enhancement of

arachidonic acid release (indicative of PLA2 activation) and

of acrosomal exocytosis (Fig. 4) suggesting a role for DAG

in these events.

To test for PKC involvement, prelabelled capacitated sper-

matozoa were exposed to staurosporine (1 lM) before GABA

stimulation. Staurosporine blocked GABA-induced activation

of PLA2 and acrosomal exocytosis (Fig. 5) thus suggesting that
hanges in arachidonic acid, lysoPC, PC and acrosomal exocytosis.
M, washed and resuspended in MCM with Ca2+, or they were left

22 (2 lM) was added 5 min before GABA (5 lM) and incubation was
c acid; B, lysoPC; C, PC) and assessment of acrosomal exocytosis (D).
C, acrosomal exocytosis) experiments. (a) Significantly different from
AGKI alone (P < 0.002).



Fig. 5. Effect of staurosporine on GABA-induced arachidonic acid
release and acrosomal exocytosis. Spermatozoa prelabelled with
[14C]arachidonic acid for 5 h in LCa2+-MCM, were washed and
resuspended in MCM with Ca2+, or they were left unlabelled and
treated similarly. Staurosporine (STA) (1 lM) was added 5 min before
stimulation with GABA (10 lM) and sperm cells were further
incubated for 15 min before lipid extraction and quantification (A)
and assessment of acrosomal exocytosis (B). Results are the means ±
S.E.M. of three different experiments. (a) Significantly different from
control (P < 0.0001); (b) significantly different from GABA
(P < 0.0001).
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PKC is involved in the regulation of these events. Stauro-

sporine, at the low concentration used in this study, may be

acting on PKC and the effect is similar to that seen with chel-

erythrine chloride (another, more specific PKC inhibitor) on

PLA2 and exocytosis stimulated by progesterone or ZP [22].
3.4. GABA-, progesterone- and ZP-induced activation of PLA2

is regulated by the MEK-ERK1/2 pathway

In a previous study, we found that progesterone- and ZP-in-

duced PLA2 activation is regulated by PKA and PKC [22].

Here, we tested in two series of experiments whether PLA2

activation and exocytosis induced by GABA, progesterone

or ZP is regulated by the MEK-ERK1/2 pathway.

In a first series of experiments, capacitated spermatozoa

were exposed to various concentrations of the MEK inhibitors

U0126 (0.065–1.3 lM) or PD98059 (10–100 lM) for 15 min

and were then treated with 5 lM GABA, 10 lM progesterone

or 1 ZP/ll for 15 min before assessment of acrosomal exocyto-

sis. Results showed that U0126 or PD98059 caused a concen-

tration-dependent inhibition of agonist-induced acrosomal

exocytosis (data not shown). The maximal effects were seen
with 0.5 lM U0126 or 50 lM PD98059, and these concentra-

tions are similar to those found to inhibit MEK in somatic

[41–43] and sperm cells [35–37]. These concentrations of inhib-

itors did not affect sperm motility or acrosomal integrity (data

not shown). As control, we tested the effect of U0124, an inac-

tive analogue of U0126, on acrosomal exocytosis induced by

GABA, progesterone or ZP. It was found that inclusion of

U0124 did not inhibit agonist-induced acrosomal exocytosis

(data not shown).

In a second series of experiments the involvement of MEK-

ERK1/2 in the regulation of PLA2 activation and acrosomal

exocytosis was further examined. Prelabelled and capacitated

spermatozoa were exposed to U0126 or PD98059 for 15 min

and were then stimulated with GABA (5 lM), progesterone

(10 lM) or ZP (1/ll) and changes in arachidonic acid (as

indicative of PLA2 activation), and occurrence of exocytosis,

were examined. Exposure of prelabelled and capacitated sper-

matozoa to 0.5 lM U0126 resulted in a complete inhibition

of arachidonic acid release (Fig. 6A–C) and exocytosis

(Fig. 6D–F) triggered by any of the agonists. Similarly, sper-

matozoa exposed to PD98059 (range 10–100 lM) showed a

concentration-dependent inhibition of arachidonic acid re-

lease (Fig. 7A–C) and exocytosis (Fig. 7D–F) when they were

treated with GABA, progesterone or ZP.
4. Discussion

The results of this study strongly suggest that GABA stimu-

lates sperm PLA2 activation and that this event is important

for acrosomal exocytosis, a phenomenon resembling the effect

of progesterone on sperm cells. Furthermore, PLA2 activation

appears to be modulated by the MEK-ERK1/2 kinase path-

way when spermatozoa are stimulated to undergo exocytosis

with GABA, progesterone or ZP.

Treatment of precapacitated guinea pig spermatozoa with

GABA resulted in a concentration-dependent increase of exo-

cytosis. The optimal concentration of GABA inducing acro-

somal exocytosis in guinea pig spermatozoa was 10 lM. At

lower (<10 lM) or higher concentration (>10 lM), GABA

was less effective. This result is in agreement with earlier

observations of GABA-stimulated acrosomal exocytosis of

precapacitated mouse [18], human [19], and rat [14] spermato-

zoa. The optimal concentration of GABA in initiating acro-

somal exocytosis varies slightly between species but in all

cases the response is biphasic with higher concentrations pro-

ducing lesser stimulation. Both GABAA [9,11,12] and GA-

BAB [13] receptors have been identified in spermatozoa.

Studies in rat sperm cells suggest that activation of the GA-

BAB receptor could inhibit the GABAA receptor [14], which

may result in GABA having this paradoxical effect. It is thus

possible that GABA at high concentration (>10 lM in guinea

pig spermatozoa) may also activate the GABAB receptor,

thereby nullifying the stimulatory activity on the GABAA

receptor, and thus leading to a decrease in acrosomal exocy-

tosis. This could explain results of studies on human sperma-

tozoa that have shown little or no effect of very low or high

GABA concentrations on intracellular calcium rise or exocy-

tosis [9,44,45]. On the other hand, it is also possible that dif-

ferences in sperm capacitation status could be related to

differences in responses to GABA [19].



Fig. 6. Effect of U0126 on GABA-, progesterone (P)- or ZP-induced release of arachidonic acid and acrosomal exocytosis. Spermatozoa were
labelled with [14C]arachidonic acid for 5 h in LCa2+-MCM, washed and resuspended in MCM with Ca2+, or they were left unlabelled and treated
similarly. U0126, a MEK inhibitor, was added to the medium 15 min before stimulation with 5 lm GABA (A, B), 10 lM progesterone (C, D) or
1 ZP/ll (E, F). Stimulation was extended for 15 min before lipid extraction and quantification (A, C, E) or assessment of acrosomal exocytosis (B, D,
F). Results are the means ± S.E.M. of five different experiments. (a) Significantly different from control (P < 0.0001); (b) significantly different from
GABA, progesterone or ZP (P < 0.0002).
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Spermatozoa precapacitated in low-Ca2+ medium and

simultaneously incubated with radioactive precursors

[14C]choline chloride or [14C]arachidonic acid to label sperm

phospholipids were used to characterize PLA2 activation in re-

sponse to GABA. Stimulation with this agonist led to an in-

crease in arachidonic acid and lysoPC levels, and a parallel

decrease in PC. These lipid changes are indicative of PLA2

activity (demonstrating for the first time that GABA leads to

activation of sperm PLA2), and resemble changes observed

when spermatozoa were stimulated with progesterone, as seen
in this study, and earlier work [22,46], or ZP [21,22]. GABA-

induced activation of PLA2 seems essential for exocytosis be-

cause the PLA2 inhibitor aristolochic acid blocked these lipid

changes and acrosomal exocytosis. It has been postulated that,

under natural conditions, GABA actions would be mimicked

by progesterone, with the steroid acting both on GABAA

receptors and progesterone receptors on the surface of the

sperm membrane [17–19]. However, it is also possible that

GABA itself could have a physiological role in acrosomal exo-

cytosis (and other sperm functions) due to its presence in the



Fig. 7. Effect of PD98059 on GABA-, progesterone (P)- or ZP-induced release of arachidonic acid and acrosomal excytosis. Spermatozoa were
capacitated and labelled with [14C]arachidonic acid for 5 h in LCa2+ MCM, washed and resuspended in MCM with Ca2+, or they were left unlabelled
and treated similarly. Spermatozoa were exposed to various concentrations of PD98059 for 15 min and challenged with 5 lM GABA (A,B), 10 lM
progesterone (C, D), or 1 ZP/ll (E, F) for 15 min before lipid extraction and separation (A, C, E) or assessment of acrosomal exocytosis (B, D, F).
Results are the means ± S.E.M. of 3–5 different experiments. (a) Different from control (P < 0.0001); (b) significantly different from GABA,
progesterone or ZP (P < 0.0002), (c) different from agonist plus 10 lM PD98059 (P < 0.02 to P < 0.0001).
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female genital tract. Future studies should characterise this

further.

Several mechanisms may regulate PLA2 during acrosomal

exocytosis, and differences may exist depending on the agonist

triggering exocytosis in spermatozoa. Evidence for the involve-

ment of various pathways has already been presented, namely:

(a) Gi-protein mediated PLA2 activation after ZP stimulation,
but not after progesterone stimulation [21], (b) activation by

PKA after stimulation with progesterone or ZP [22], (c) a di-

rect modulation by DAG [21,47], and (d) regulation by PKC

in sperm cells stimulated with progesterone or ZP [22]. The

present study has revealed that the DAG-PKC pathway is also

important for the modulation of PLA2 activation triggered by

GABA stimulation.
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Other pathways may also be involved in PLA2 regulation.

Recent evidence indicates that ERKs (ERK1/ERK2) belong-

ing to the family of MAP kinases are present in spermato-

zoa and could be involved in regulation of motility

[33,34,48,49], capacitation [32–35,50], and acrosomal exocy-

tosis [35,36]. However, the targets of the ERK1/2 kinase

pathway in spermatozoa are not known. We explored if

the MEK-ERK1/2 kinase pathway regulates PLA2 activation

by using two inhibitors of MEK-mediated ERK1/ERK2

activation (PD98059 [41,42]; U0126 [43]) and following

changes in PLA2-mediated arachidonic acid release and exo-

cytosis. These inhibitors have been previously found to inhi-

bit MEK-ERK1/2-induced phosphorylation and capacitation

[33–35] in human spermatozoa. In addition, PD98059 and

U0126 were found to inhibit lysoPC-induced acrosomal exo-

cytosis in capacitated human spermatozoa [35,37] and ZP-

or A23187-induced exocytosis, also in capacitated human

spermatozoa [36]. However, another study could not detect

evidence for inhibition of progesterone- or A23187-induced

acrosomal exocytosis by PD98059 [33].

Our results showed that U0126 completely blocked exocy-

tosis induced by GABA, progesterone or ZP, whereas its

inactive analogue U0124 had no such effect. U0126 also

inhibited arachidonic acid release triggered by these three

agonists, suggesting that the MEK-ERK1/2 pathway may

be necessary for PLA2 activation. Similar results were ob-

tained with PD98059, which inhibited both arachidonic acid

release and acrosomal exocytosis stimulated by GABA, pro-

gesterone or ZP.

It is interesting the all three agonists of exocytosis

(GABA, progesterone and ZP) stimulate activation of

PLA2 and that pathways leading to such activation involve

the MEK-ERK1/2 pathway. However, these agonists may

not elicit the same upstream signalling processes leading to

activation of the MEK-ERK1/2 pathway since previous

work has revealed that GABA and progesterone effects are

transduced by tyrosine kinase(s) but not by Gi proteins,

whereas ZP action is mediated by both tyrosine kinase(s)

and Gi proteins [20].

Taken together, our results indicate that exocytosis initi-

ated by physiological agonists involves PLA2 activation, that

this activation may be regulated by the MEK-ERK1/2 path-

way, and that this MAP kinase-regulated PLA2 activation is

important for acrosomal exocytosis. Furthermore, our results

suggest that GABA could play an important role in sperm

function by triggering DAG-PKC- and MEK-ERK1/2-modu-

lated PLA2 activation during acrosomal exocytosis.
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