219 research outputs found

    Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems

    Get PDF
    Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications. Although there is an extensive literature on qualitative properties such as safety and liveness, there is still a lack of quantitative and uncertain property verifications for these systems. In uncertain environments, agents must make judicious decisions based on subjective epistemic. To verify epistemic and measurable properties in multi-agent systems, this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge (FCTLK). We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems. In addition, we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures, as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic (FCTL) formulas. Accordingly, we transform the FCTLK model checking problem into the FCTL model checking. This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads. Finally, we present correctness proofs and complexity analyses of the proposed algorithms. Additionally, we further illustrate the practical application of our approach through an example of a train control system

    Formal Modeling and Verification for MVB

    Get PDF
    Multifunction Vehicle Bus (MVB) is a critical component in the Train Communication Network (TCN), which is widely used in most of the modern train techniques of the transportation system. How to ensure security of MVB has become an important issue. Traditional testing could not ensure the system correctness. The MVB system modeling and verification are concerned in this paper. Petri Net and model checking methods are used to verify the MVB system. A Hierarchy Colored Petri Net (HCPN) approach is presented to model and simulate the Master Transfer protocol of MVB. Synchronous and asynchronous methods are proposed to describe the entities and communication environment. Automata model of the Master Transfer protocol is designed. Based on our model checking platform M3C, the Master Transfer protocol of the MVB is verified and some system logic critical errors are found. Experimental results show the efficiency of our methods

    Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori

    Get PDF
    The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect’s physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect’s innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect’s immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms

    Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture

    Get PDF
    BACKGROUND: Sequencing and annotation of the genome of rice (Oryza sativa) have generated gene models in numbers that top all other fully sequenced species, with many lacking recognizable sequence homology to known genes. Experimental evaluation of these gene models and identification of new models will facilitate rice genome annotation and the application of this knowledge to other more complex cereal genomes. RESULTS: We report here an analysis of the chromosome 10 transcriptome of the two major rice subspecies, japonica and indica, using oligonucleotide tiling microarrays. This analysis detected expression of approximately three-quarters of the gene models without previous experimental evidence in both subspecies. Cloning and sequence analysis of the previously unsupported models suggests that the predicted gene structure of nearly half of those models needs improvement. Coupled with comparative gene model mapping, the tiling microarray analysis identified 549 new models for the japonica chromosome, representing an 18% increase in the annotated protein-coding capacity. Furthermore, an asymmetric distribution of genome elements along the chromosome was found that coincides with the cytological definition of the heterochromatin and euchromatin domains. The heterochromatin domain appears to associate with distinct chromosome level transcriptional activities under normal and stress conditions. CONCLUSION: These results demonstrated the utility of genome tiling microarray in evaluating annotated rice gene models and in identifying novel transcriptional units. The tiling microarray sanalysis further revealed a chromosome-wide transcription pattern that suggests a role for transposable element-enriched heterochromatin in shaping global transcription in response to environmental changes in rice

    Magnetic properties of Fe intercalation FexTaSe2

    Get PDF
    Intercalation of transition metal dichalcogenides with magnetic elements has been the subject of increasing research interest, aiming to explore novel magnetic materials with anisotropy and spin-orbit coupling. In this paper, two magnetic samples with varying Fe content have been prepared using different growth conditions via the chemical vapor transport method. A comprehensive investigation of the magnetic properties of the materials has been conducted using the Physical Property Measurement System (PPMS, EvercoolⅡ-9T, Quantum Design). The results reveal distinct features in the studied materials. Fe0.12TaSe2 exhibits significant ferromagnetism with a Curie transition temperature of 50 K. However, its in-plane magnetism is weak and no significant hysteresis loop is observed below the Curie temperature. On the other hand, Fe0.25TaSe2 exhibits antiferromagnetism without any hysteresis loop and has a NĂ©el temperature up to 130 K. This finding is quite different from the intercalated iron in FexTaS2, where only an antiferromagnetic state occurs with x larger than 0.4. Our study thus provides updated insights into the magnetic properties of this new system and serves as a reference for future investigations of TaSe2 compounds with varying iron content

    A dissection of SARS‑CoV2 with clinical implications (Review)

    Get PDF
    We are being confronted with the most consequential pandemic since the Spanish flu of 1918‑1920 to the extent that never before have 4 billion people quarantined simultaneously; to address this global challenge we bring to the forefront the options for medical treatment and summarize SARS‑CoV2 structure and functions, immune responses and known treatments. Based on literature and our own experience we propose new interventions, including the use of amiodarone, simvastatin, pioglitazone and curcumin. In mild infections (sore throat, cough) we advocate prompt local treatment for the naso‑pharynx (inhalations; aerosols; nebulizers); for moderate to severe infections we propose a tried‑and‑true treatment: the combination of arginine and ascorbate, administered orally or intravenously. The material is organized in three sections: i) Clinical aspects of COVID‑19; acute respiratory distress syndrome (ARDS); known treatments; ii) Structure and functions of SARS‑CoV2 and proposed antiviral drugs; iii) The combination of arginine‑ascorbate

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    Legume Genomics and Breeding

    Get PDF
    This chapter contains sections titled; Introduction; Constraints in Crop Production; Genomic Resources in Legumes;Trait Mapping and Marker-Assisted Selection; Summary and Prospects; Acknowledgments; Literature Cite
    • 

    corecore