839 research outputs found

    Cross-Selectivity in the Catalytic Ketonization of Carboxylic Acids

    Get PDF
    A mixture of acetic and 2-methylpropanoic (isobutyric) acids representing non-branched and branched acids, respectively, was catalytically converted to a mixture of ketones in a set of statistically designed experiments (DOE). The selectivity toward the cross-ketonization product was analyzed depending on (a) temperature within 300–450 °C range, (b) molar fraction of each acid in the mixture, from 10% to 90%, and (c) liquid hourly space velocity (LHSV) within 2–12 h−1, and compared against the selectivity toward two symmetrical ketones. Six metal oxide catalysts were tested and ranked on their ability to yield the cross-product as opposed to the self-condensation product. The catalysts were based on either the anatase form of titania or monoclinic form of zirconia and treated with either KOH or K2HPO4. The titania catalyst treated by KOH outperformed all other catalysts by providing the cross-selectivity above the statistically expected binomial distribution. The criterion for having a high cross-selectivity in the decarboxylative ketonization is formulated mathematically as the separation of roles of two acids, one being a more active enolic component, and the other being the preferred carbonyl component. According to the suggested criterion, the less branched acetic acid reacts as both the preferred carbonyl and enolic component with untreated catalysts. Therefore, untreated catalysts promote selective formation of the symmetrical ketone, acetone, thereby decreasing the selectivity to the cross-ketone. After alkaline treatment, both the anatase form of titania and monoclinic form of zirconia increase the isobutyric acid participation as the carbonyl component. Acetic acid remains as the preferred enolic component with all treated catalysts, thus increasing the selectivity toward the cross-product in the ketonization of a mixture of carboxylic acids. The condition for achieving a high cross-selectivity by polarizing roles of the two reactants can be extended to other types of cross-condensations

    Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area

    Get PDF
    1. Reliable modelling of above-ground Net Primary Production (aNPP) at fine resolution is a significant challenge. A promising avenue for improving process models is to include response and effect trait relationships. However, uncertainties remain over which leaf traits are correlated most strongly with aNPP. 2. We compared abundance-weighted values of two of the most widely used traits from the Leaf Economics Spectrum (Specific Leaf Area and Leaf Dry Matter Content) with measured aNPP across a temperate ecosystem gradient. 3. We found that Leaf Dry Matter Content (LDMC) as opposed to Specific Leaf Area (SLA) was the superior predictor of aNPP (R2=0.55). 4. Directly measured in situ trait values for the dominant species improved estimation of aNPP significantly. Introducing intra-specific trait variation by including the effect of replicated trait values from published databases did not improve the estimation of aNPP. 5. Our results support the prospect of greater scientific understanding for less cost because LDMC is much easier to measure than SLA

    Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

    Get PDF
    The use of probes containing heavy quarks is one of the pillars for the study of medium formed in high energy nuclear collisions. The conceptual ideas formulated more than two decades ago, such as quark mass hierarchy of the energy that the probe lose in the media and color screening of bound heavy quarkonia states, have being challenged by the measurements performed at RHIC and LHC. A summary of the most recent experimental observations involving charm and bottom quarks in pp, pA, and AA collisions from collisions energies extending from √sNN =200 GeV to 8 TeV is presented. This manuscript also discuss possibilities of new measurements which can be at reach with increased statistics and detector upgrades

    Fish and macroinvertebrate assemblages reveal extensive degradation of the world's rivers

    Get PDF
    Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
    corecore