
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Leaf dry matter content is better at predicting above-ground net primary
production than specific leaf area
Smart, Simon Mark; Glanville, Helen; del Carmen Blanes, Maria; Mercado, Lina
Maria; Emmett, Bridget; Cosby, Bernard; Jones, David; Marrs, Robert Hunter;
Butler, Adam ; Marshall, Miles; Reinsch, Sabine; Herrero-Jauregui, Cristina;
Hodgson, John Gavin
Functional Ecology

DOI:
10.1111/1365-2435.12832

Published: 01/06/2017

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Smart, S. M., Glanville, H., del Carmen Blanes, M., Mercado, L. M., Emmett, B., Cosby, B.,
Jones, D., Marrs, R. H., Butler, A., Marshall, M., Reinsch, S., Herrero-Jauregui, C., & Hodgson,
J. G. (2017). Leaf dry matter content is better at predicting above-ground net primary production
than specific leaf area. Functional Ecology, 31(6), 1336-1344. https://doi.org/10.1111/1365-
2435.12832

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 11. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bangor University Research Portal

https://core.ac.uk/display/186465816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/1365-2435.12832
https://research.bangor.ac.uk/portal/en/researchoutputs/leaf-dry-matter-content-is-better-at-predicting-aboveground-net-primary-production-than-specific-leaf-area(5e87eb2b-e81d-42bf-a1ee-f1638aa9d0f0).html
https://research.bangor.ac.uk/portal/en/researchers/david-jones(247f4973-4af0-4656-9ec0-e008f86111cb).html
https://research.bangor.ac.uk/portal/en/researchers/david-jones(247f4973-4af0-4656-9ec0-e008f86111cb).html
https://research.bangor.ac.uk/portal/en/researchoutputs/leaf-dry-matter-content-is-better-at-predicting-aboveground-net-primary-production-than-specific-leaf-area(5e87eb2b-e81d-42bf-a1ee-f1638aa9d0f0).html
https://research.bangor.ac.uk/portal/en/researchoutputs/leaf-dry-matter-content-is-better-at-predicting-aboveground-net-primary-production-than-specific-leaf-area(5e87eb2b-e81d-42bf-a1ee-f1638aa9d0f0).html
https://doi.org/10.1111/1365-2435.12832
https://doi.org/10.1111/1365-2435.12832


1 

 

Leaf Dry Matter Content is better at predicting above-ground Net Primary Production than 1 

Specific Leaf Area  2 

Smart, Simon Mark1,  3 

Glanville, Helen Catherine2,  4 

Blanes, Maria del Carmen5,  5 

Mercado, Lina Maria3,4,  6 

Emmett, Bridget Anne5,  7 

Jones, David Leonard2,  8 

Cosby, Bernard Jackson5,  9 

Marrs, Robert Hunter6,  10 

Butler, Adam7, 11 

Marshall, Miles Ramsvik5,  12 

Reinsch, Sabine5,  13 

Herrero-Jáuregui, Cristina8, 14 

 Hodgson, John Gavin9 15 

 16 

1 Land Use Group, NERC Centre for Ecology & Hydrology, Library Avenue, Bailrigg LA1 4AP 17 

UK 18 

 19 

2 School of Environment, Natural Resources & Geography, Bangor University, Bangor LL57 20 

2UW UK 21 

 22 



2 

 

3 College of Life and Environmental Sciences, Geography Department, University of Exeter, 23 

Rennes Drive, Exeter EX4 4RJ 24 

 25 

4 NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford  26 

Wallingford, Oxfordshire, OX10 8BB4  UK 27 

 28 

5 NERC Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, 29 

Gwynedd, LL57 2UW UK 30 

 31 

6 School of Environmental Sciences, University of Liverpool, Nicholson Building, Liverpool, 32 

L69 3GP UK 33 

 34 

7 Biomathematics & Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, 35 

Edinburgh EH9 3FD UK 36 

 37 

8 Department of Ecology, Complutense University of Madrid, C/ José Antonio Novais 12 38 

28040 Madrid, España 39 

 40 

9 Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western 41 

Bank, Sheffield S10 2TN UK 42 

 43 

Author for correspondence: 44 

Simon M. Smart 45 



3 

 

Tel: +44 1524 595800 46 

Email: ssma@ceh.ac.uk 47 

 48 

Running headline: LDMC and SLA as predictors of primary production.  49 

mailto:ssma@ceh.ac.uk


4 

 

Summary  50 

1. Reliable modelling of above-ground Net Primary Production (aNPP) at fine resolution is a 51 

significant challenge. A promising avenue for improving process models is to include 52 

response and effect trait relationships. However, uncertainties remain over which leaf 53 

traits are correlated most strongly with aNPP.   54 

2. We compared abundance-weighted values of two of the most widely used traits from 55 

the Leaf Economics Spectrum (Specific Leaf Area and Leaf Dry Matter Content) with 56 

measured aNPP across a temperate ecosystem gradient.  57 

3. We found that Leaf Dry Matter Content (LDMC) as opposed to Specific Leaf Area (SLA) 58 

was the superior predictor of aNPP (R2=0.55).  59 

4. Directly measured in situ trait values for the dominant species improved estimation of 60 

aNPP significantly. Introducing intra-specific trait variation by including the effect of 61 

replicated trait values from published databases did not improve the estimation of 62 

aNPP.  63 

5. Our results support the prospect of greater scientific understanding for less cost because 64 

LDMC is much easier to measure than SLA.     65 

 66 

 67 

Key-words: Bayesian modelling, ecosystem, global change, measurement error, ecosystem 68 

function, intra-specific variation, 69 

 70 

Introduction 71 

Net Primary Production (NPP), defined as the rate at which plants convert CO2 and water 72 

into dry matter, is the basis for life on Earth and is a fundamental ecosystem function 73 

supporting food production, soil formation and climate stabilisation. An estimated 28.8% of 74 

global NPP (Haberl et al. 2007) is appropriated by humans as food, fibre and fuel with 75 

consumption often spatially far removed from the area of production (Erb et al. 2009). 76 
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Accurate prediction of NPP is therefore critical to ecological and economic assessments of 77 

the links between land-use change, human well-being and impacts on biodiversity and other 78 

ecosystem services (DeFries 2002; Haberl et al. 2007). NPP is, however, challenging to 79 

measure and predict accurately (Cramer et al. 1999; Scurlock et al. 2002; Jung et al. 2007). A 80 

way forward is to derive regionally applicable relationships between plant traits and NPP 81 

thereby providing empirical understanding that can potentially be built into global 82 

ecosystem models to improve their performance (Wright et al. 2006; Van Bodegom et al. 83 

2012). New empirical predictions of NPP in terms of plant trait abundance also allow 84 

process models to be tested at fine resolution across a range of ecosystems.  85 

Trait-based ecology has become a unifying strand in global change biology because the 86 

same sets of key plant traits respond to global change drivers while also driving subsequent 87 

effects on ecosystem function (Tateno & Chapin 1997; Suding et al. 2008; Reich 2014). We 88 

test the performance of two leaf traits – Leaf Dry Matter Content (LDMC) and Specific Leaf 89 

Area (SLA) – as predictors of above-ground NPP (aNPP) across a realistically wide 90 

productivity gradient using comprehensive measurements of aNPP comprising the full range 91 

of plant functional types that dominate temperate ecosystems.  Our study seeks to resolve 92 

an outstanding question concerning the relative merits of each trait as a correlate of soil 93 

fertility and ecosystem productivity (Wilson et al. 1999; Hodgson et al. 2011). LDMC and SLA 94 

both correlate strongly with nutrient availability but it is not clear which of these is the best 95 

predictor of aNPP (Wilson et al. 1999; Ordoñez et al. 2009; 2010; Fortunel et al. 2009; 96 

Hodgson et al. 2011; Pakeman 2011). Given its repeatedly proven alignment with the soil 97 

available nutrients axis, SLA has become the pre-eminent predictive leaf trait (Reich 2014). 98 

However, the sensitivity of SLA to light availability means that it is not a reliable partial 99 
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predictor of soil fertility as irradiance changes during succession. Since primary production 100 

reflects the availability of resources that include light and nutrients it could mean that SLA is 101 

actually a better predictor of aNPP. To test this relationship requires treating SLA as an 102 

effect trait rather than as a response trait where variation in abundance-weighted values 103 

are explained by abiotic factors (Hodgson et al. 2011).  104 

 105 

Unlike SLA, LDMC varies independently of leaf thickness (Shipley 1995; Wilson et al. 1999; 106 

Roche et al. 2004) but is also strongly correlated with resource availability and with relative 107 

growth rate (Weiher et al. 1999; Garnier et al. 2004; Fortunel et al. 2009). LDMC has been 108 

recommended as a more reliable correlate of soil fertility at least in biomes not subject to 109 

severe water limitation (Vendramini et al. 2002). Here we explore the role of SLA and LDMC 110 

as predictors of ecosystem function and ask which best predicts aNPP across ecosystems. 111 

Since there has been a growing appreciation of the influence of within-species trait variation 112 

(Albert et al. 2010; Siefert et al. 2015) we also test whether including intra-specific trait 113 

variation improves the fitted relationship between traits and aNPP. We investigate the 114 

performance of each trait as a predictor of aNPP when species of low abundance are 115 

excluded and when plant species abundance-weighted trait values for the dominant species 116 

among habitats are based on database values or in situ measurements. 117 

Our starting point was to compute abundance-weighted trait values based on published UK 118 

database values. This is the easiest method to apply for constructing trait-derived variables. 119 

However, if locally measured trait-values differ appreciably from database means and 120 

correlate with aNPP then database-derived means will be a poorer predictor of local aNPP. 121 

We tested the importance of intra-specific variation in two ways. First, we substituted mean 122 
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database trait values for the dominant species in each sampling plot with in situ 123 

measurements of leaf traits for those species. The two most abundant species were 124 

selected to ensure adequate sampling of the species contributing the most biomass to each 125 

stand. Secondly, we introduced intra-specific trait variation via its effect on the variance of 126 

the abundance-weighted mean trait values. Thus, rather than employing one abundance-127 

weighted mean trait value per sampling plot, a prior distribution of values was calculated 128 

based on repeated draws of trait values for each individual plant species. The distributions 129 

of trait values for each species were derived from readily accessible replicated database 130 

measurements. We then applied a Bayesian measurement error model that allows the 131 

observed values of aNPP to feedback onto the posterior estimates of the abundance-132 

weighted trait values potentially improving the fit between aNPP and trait-based 133 

explanatory variable.  If successful, this would suggest that better use could be made of the 134 

variation in trait values that is readily accessible from databases, rather than just utilising 135 

trait means. 136 

 137 

In summary we test the following hypotheses: 138 

1. Abundance-weighted LDMC is a better predictor of aNPP than abundance-weighted 139 

SLA. 140 

2. Estimation of aNPP is improved when trait values for the dominant plant species are 141 

based on in situ measurements rather than database averages.  142 

3. Estimation of aNPP is improved when intra-specific trait variation based on 143 

replicated database values is included in the model.   144 

 145 
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Materials and Methods 146 

 147 

Study region and sampling locations 148 

Fifteen sites were located in the River Conwy catchment in north Wales, UK. The remaining 149 

two sites (limestone grassland and upland unimproved hay meadow) were located within 150 

the Ingleborough National Nature Reserve in North West England in the upper reaches of 151 

the Ribble catchment (Fig. 1; Table 1). The regional climate for all sites is temperate 152 

maritime (Peel, Finlayson & McMahon 2007). Annual precipitation lies between 1000 and 153 

1300 mm at Ingleborough and between 600 and 4700 mm in the Conwy valley. Average 154 

daily minimum January temperature across the sites is in the range -1 to 3 °C and average 155 

daily maximum July temperatures from 17 to 21 °C (long term annual averages 1981-2010, 156 

http://www.metoffice.gov.uk/public/weather/climate/#?region=uk).  157 

 158 

Above-ground NPP was measured in 49 vegetation sampling plots through 2013 and 2014. 159 

These plots were nested into 17 sites arranged along a productivity gradient from lowland 160 

grasslands intensively managed for agriculture through to montane heath. Within each site, 161 

an area of target habitat was selected as a roughly rectangular fraction of the wider habitat 162 

of interest. In enclosed land this rectangle was defined by field boundaries. In woodlands 163 

and unenclosed habitats a rectangular area was selected to encompass a large area (0.25-1 164 

ha) of the target habitat, for example blanket bog, acid grassland and montane heath. 165 

Sampling locations within each site were then chosen at random.  Together, these sites 166 

sample all common habitat and land-use types in Britain and thus were intended to 167 

represent the principal plant biodiversity and productivity gradients in NW Europe. 168 

 169 

 170 

Measurement of above-ground Net Primary Production 171 

 172 

http://www.metoffice.gov.uk/public/weather/climate/#?region=uk
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Above-ground NPP (g dry mass m-2 yr-1) was measured using a variety of methods according 173 

to the plant functional types present. These types comprised C3 graminoids (Poaceae, 174 

Junaceaa, Cyperaceae), broad-leaved and needle-leaved trees, dwarf shrubs, forbs and 175 

bryophytes (Table 1). All plots were visited in early January at the start of each 176 

measurement year. Any green herbaceous material was removed by clipping to 1 cm 177 

vegetation height. Standing litter was, as far as possible, not removed nor disturbed. In 178 

sheep and cattle-grazed systems (grasslands and mires), livestock exclosures were installed 179 

and the vegetation cut twice throughout the growing season; first at estimated peak 180 

biomass and a second time to capture late summer and autumn regrowth. These two values 181 

were then summed. While this method does not overcome possible issues with negative 182 

and positive compensatory growth as a result of grazing, uncertainty over the importance 183 

and direction of these effects is great and no clearly superior method appears to exist that 184 

accounts for these effects whilst also excluding grazers (McNaughton et al. 1996; Pontes et 185 

al. 2007). 186 

 187 

The biomass fractions attributable to functional types within woodland and peatland 188 

ecosystems were measured using differing methods. In peatlands, growth of Sphagnum 189 

species was measured over two years using the cranked wire method (Clymo 1970; Kivimäki 190 

2011). Peatland graminoids were measured by harvesting annual biomass accumulation in 191 

livestock exclosures over one year using the same methods applied to grazed grasslands.  192 

 193 

In woodlands, different methods were used to measure annual production of trees. Leaf 194 

litter was collected using 20 randomly placed buckets (26cm in diameter) per 200m2 195 
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sampling plot. These were installed in September before litterfall and visited and emptied 196 

every two to four weeks until no leaves were visible in the canopy. Annual woody mass 197 

increment was measured by combining tree-coring, DBH (tree diameter at 1.3 m height), 198 

wood density and tree height measurements. Herbaceous understorey growth was 199 

harvested in spring and summer after cutting back in January. Where present, annual 200 

production of the bryophyte layer was measured by harvesting the moss mat that had 201 

grown through coarse plastic meshes of known size pegged securely to the substrate in 202 

early January and harvested after one year.  203 

 204 

Measurement of aNPP was carried out using plots of varying dimensions scaled to the size 205 

of the plant types present, but then expressed as production per m2 across all vegetation 206 

types (Table 1). Full details of all the methods used for measurement of aNPP on each site 207 

are described in Supplementary Material. 208 

 209 

Plant species abundance 210 

 211 

In each plot in which aNPP was measured, all vascular plant species and bryophytes were 212 

identified and cover was estimated in intervals of 5 % except for species recorded at ≤1 % 213 

cover which were given a value of 1. Percentage cover was based on horizontal leaf 214 

projection over the plot so that total cover over all species was allowed to exceed 100, for 215 

example, where the understorey comprised a bryophyte layer, a fern layer and a tree 216 

canopy. Only species recorded with ≥5 % cover were used in the calculation of mean 217 

abundance-weighted trait values.  218 
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        219 

Plant traits 220 

 221 

In situ measurements of SLA and LDMC were carried out by focussing on the dominant 222 

vascular plant species in each plot defined as the two species contributing maximum 223 

standing biomass in the year of sampling (Table 1).  LDMC (g dry mass g-1 fresh mass) was 224 

measured by weighing fresh material consisting of 10 to several hundred mature but non-225 

senescent leaves from different plants depending on leaf size. Leaves were weighed fresh, 226 

then dried for 24 hours at 80 oC, and weighed again. SLA (mm2 mg-1 dry mass) was measured 227 

by sampling 10 leaves from different plants. Leaf area was calculated based on scanned 228 

photographs analysed using the Image J software v1.46r (http://imagej.nih.gov/). Dry 229 

weight was measured as for LDMC (Pérez-Harguindeguy et al. 2013).  230 

  231 

Database values for SLA and LDMC for all vascular plant species encountered in the sample 232 

were extracted from LEDA (Kleyer et al. 2008) and ECPE (Grime et al. 2007). Only values for 233 

UK material were included except in four instances where German values were included 234 

because no UK data were available. These were Carex bigelowii, C.nigra, Agrostis canina and 235 

Anthoxanthum odoratum. None of these species were dominant in any of the sample plots. 236 

Out of a total pool of 136 vascular plant species recorded in the 49 aNPP plots all had 237 

database trait values. The ranges of trait values, including measured and database values, 238 

were 57.2 for SLA (4.81, Picea sitchensis to 62.1, Oxalis acetosella) and 0.45 for LDMC (0.08, 239 

Stellaria media to 0.53, Sesleria caerulea).  240 

 241 

http://imagej.nih.gov/
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 242 

Analysis 243 

 244 

Mean abundance-weighted trait values (𝑥𝑗𝑘) for SLA and LDMC were computed for each 245 

NPP sampling plot j within each site k as follows; 246 

 247 

 248 

 249 

𝑥𝑗𝑘 =  ∑
𝜏𝑖𝑗𝑘𝑝𝑖𝑗𝑘

∑ 𝑝𝑖𝑗𝑘𝑖
𝑖

 250 

 251 

 252 

where (pijk) was either the raw percentage cover or square-root transformed cover value for 253 

species i in each sample plot j within site k (e.g. Manning et al. 2015). The trait values (𝜏𝑖𝑗𝑘) 254 

for each species i in each sample plot j and within site k were based either on replicated in 255 

situ measurements on the two plant species with the highest cover in each plot, or mean 256 

values of each trait extracted from the databases described above. 257 

 258 

Two values of the mean abundance-weighted trait (SLA or LDMC) were derived for each plot 259 

based on either trait values derived solely from UK databases or supplemented by in situ 260 

trait measurements for the dominant species in each plot where this value substituted for 261 

the database average for those species (Table 1). Abundance-weighted values for SLA and 262 

LDMC were used as covariates in regression models designed to test the three hypotheses 263 

by determining which model best predicted measured aNPP.   264 
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 265 

Statistical modelling 266 

 267 

Model building was carried out using the ‘lm’ and ‘lmer’ functions in the lme4 R package 268 

(Bates et al. 2015). Initial data exploration and preparation followed the steps outlined in 269 

Zuur et al. (2010) and Crawley (2013). We identified outliers using the outlierTest function in 270 

the ‘lm’ R package. The boxcox function in the ‘mass’ R package was used to assess 271 

homogeneity of variance and the nature of any transformation required to aNPP.  272 

 273 

Tests of hypotheses 1 to 3 were carried out by comparing models where each model was of 274 

the form, 275 

 276 

yik = mik + γk + εik ,                                         1) 277 

 278 

mjk= a + b.xik           2) 279 

 280 

γk ~ N (0, σγ
2) 281 

 282 

εik ~ N (0, σε
2). 283 

 284 

Where yjk was the natural log transformed aNPP for plot j in site k, xjk was the abundance-285 

weighted trait variable and γk was a random intercept for each site k.  286 

 287 
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Model performance was evaluated by likelihood ratio test and the difference in AICc values 288 

between pairs of models. The AICc statistic was used in light of the small sample size 289 

(Burnham & Anderson 2002).  290 

 291 

To test whether estimation of aNPP was improved by the inclusion of intra-specific trait-292 

variation (Hypothesis 3), a Bayesian measurement-error model was constructed in 293 

OpenBUGS ver 3.2.2 rev 1063 (Lunn et al. 2013). We modelled the variation in abundance-294 

weighted trait values in each plot by adjusting equation 2) to become, 295 

 296 

mjk= a + b.zjk           3) 297 

 298 

xjk ~ N(zjk, σx
2). 299 

  300 

Here, we now assume that the observed abundance-weighted mean xjk is an imperfect 301 

measure of the true abundance-weighted mean zjk with its variance being a function of the 302 

distributions of species’ trait values contributing to the abundance-weighted trait value for 303 

each aNPP plot. These distributions were derived from published replicated database 304 

measurements of the trait for each species present. The variance of each species trait value 305 

is, therefore, likely to be part measurement error and part ecologically meaningful intra-306 

specific variation in the trait. Thus, σx
2 conveys the variance in the trait-derived predictor of 307 

aNPP that is attributable to known variation in the trait for each contributing species in each 308 

plot. An estimate of σx
2 was generated by first calculating the mean and standard deviation 309 

of the database measurements for each plant species which had replicate measurements in 310 
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the database. Then 1000 random draws of trait values were made based on the parameters 311 

of each species’ trait distribution. At each draw, a new dataset of abundance-weighted trait 312 

values was computed for each of the aNPP plots. An estimate of σx
2 was then derived by 313 

drawing bootstrap samples of increasing size from this dataset until its value stabilised (Fig. 314 

S1). Note that this approach implicitly assumes that measurement errors are independent 315 

between species and plots. Since we did not derive the trait distributions from measured 316 

values from all the species populations within each plot, we cannot directly test this.  317 

 318 

The fitted Bayesian measurement error model allows feedback from the aNPP data such 319 

that model fit can potentially be improved. Thus the posterior distribution of the slope b 320 

(Equation 3) is also a function of new updated posterior distributions for the abundance-321 

weighted means that optimise the fit between these and aNPP. Without feedback, the 322 

effect of intra-specific variation on the abundance-weighted trait means would simply 323 

increase the uncertainty around the estimated slope. Measurement error models with 324 

feedback are common in pharmacokinetic studies (see Lunn et al (2009; 2013) for further 325 

details and discussion).  326 

 327 

Hypothesis 3 was tested by comparing models with or without intra-specific variation 328 

(Equations 2 versus 3). We computed the marginal R2 (m) value of Nakagawa & Schielzeth 329 

(2014) for each model within our BUGS code. This quantifies the explanatory power of the 330 

fixed effects (abundance-weighted trait values) as a proportion of the sum of all the 331 

variance components; fixed effects plus random effects plus residual. Tests of the difference 332 

in R2 (m) between models were carried out by inspecting the 95 % credible interval (2.5 % 333 
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and 97.5 % quantiles) of the distribution of differences between 1000 values of R2 (m) 334 

drawn randomly from the posterior distribution of the variable for each model to see 335 

whether or not it contained zero. This was achieved in an R script applied to the converged 336 

MCMC output for R2 (m).   337 

 338 

The percentage variance attributable to the random effect of site was also calculated with 339 

and without the fixed trait effect. This firstly conveys the amount of variation in aNPP 340 

between versus within sites and then estimates the extent to which these differing 341 

components of variation in aNPP were explained by the abundance-weighted trait (Crawley 342 

2013). 343 

 344 

Results 345 

Initial data exploration showed that aNPP should be transformed to achieve normally 346 

distributed residuals and a linear response to abundance-weighted traits. The boxcox 347 

function (R package MASS) was applied, confirming that a natural log transformation was 348 

most appropriate. Models were also fitted with either untransformed, or square-root 349 

transformed plant species cover values in an attempt to reduce the influence of recording 350 

error associated with small differences in % cover. Seven out of eight models based on 351 

square-root transformed cover had lower AICc values than the respective model with 352 

untransformed cover. In three cases, including the final best fitting model, the difference 353 

was greater than the rule-of-thumb value of 2 (Table S2). Thus all subsequent modelling was 354 

performed using abundance-weighted trait variables calculated from square-root 355 

transformed cover.  356 
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 357 

Across the 49 plots nested into 17 sites, measured aNPP ranged from 99 g dry mass m-2 yr-1 358 

in montane heath to a maximum of 1481 g dry mass m-2 yr-1 in intensively-managed lowland 359 

improved grassland (Fig. 2).  Overall, 91 % of the variation in aNPP occurred between sites.  360 

AICc values for models based on abundance-weighted LDMC were all lower than for models 361 

including only SLA (LDMC: 25.6 for a model based on in situ trait measurements for the 362 

dominants and 30.7 for a model derived from database values only. SLA: 44.8 for a model 363 

based on in situ trait measurements for the dominants and 42.1 for a model derived from 364 

database values only) and differed significantly from these models based on likelihood ratio 365 

tests. Thus LDMC was the better trait for predicting aNPP and the best model included in 366 

situ measurement of LDMC on the dominant species. Hypotheses 1 and 2 were, therefore, 367 

supported.  368 

 369 

When intra-specific variation in LDMC was included, the model with the highest R2 (m) 370 

included in situ trait measurements and the effect of variation in LDMC derived from 371 

replicate values in the database. This model explained 55% of the variation in ln(aNPP) with 372 

a 95% credible interval of 0.34-0.71, but its R2 (m) value was not significantly different from 373 

a model without database-derived intra-specific variation when their differences were 374 

bootstrapped. The model with the highest R2 (m) explained 63 % of the within-site, 375 

between-plot variation and 34 % of the between-site variation. 376 

 377 

Discussion 378 

 379 
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LDMC versus SLA? 380 

 381 

We show that LDMC is a superior predictor of aNPP compared to SLA. Our result is novel 382 

since we tested SLA and LDMC as effect traits across a gradient comprising all major 383 

terrestrial ecosystems in the temperate zone. This contrasts with the large number of 384 

studies that have explored their role as response traits expressing inter- and intra-specific 385 

trait variation as a function of environmental gradients such as climate and soil conditions. 386 

While LDMC was the superior trait, low variance was explained. In particular, abundance-387 

weighted LDMC only explained a relatively small proportion of the between-site variance 388 

that dominated the dataset. It is possible that other plant species-derived predictors could 389 

be usefully included in the analysis to increase explanatory power. Leaf traits exhibit 390 

differences between plant functional types that are linked to phylogenetically-conserved 391 

patterns of biomass allocation (Shipley 1995; Wilson et al. 1999; Wright et al. 2005; Poorter 392 

et al. 2012). Therefore, introducing proportional cover of each plant functional type might 393 

be worthwhile. However, such categorical units have reduced information content because 394 

they do not express continuous variation in plant properties that influence ecosystem 395 

function (Van Bodegom et al. 2012). This is especially critical for our study. Because we 396 

included a range of successional stages across sites and because our sites were located in 397 

the oceanic western edge of Europe, the most obvious additional axes of functional 398 

variation across our dataset are plant height and bryophyte cover. In forest ecosystems, 399 

aNPP may poorly correlate with lower SLA or higher LDMC because lower production per 400 

mass of leaf is compensated by higher absolute foliage mass (Wright et al., 2005; Garnier et 401 

al., 2004). When we included abundance-weighted canopy height alongside abundance-402 
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weighted LDMC, it failed to explain significant variation in aNPP (see Supplementary 403 

Material; Text S1, Table S1, Fig. S3). Because a number of bryophyte genera, including 404 

Sphagnum, are capable of fixing atmospheric nitrogen (Cornelissen et al. 2007), the 405 

inclusion of bryophyte cover was also tested as an additional predictor alongside LDMC and 406 

SLA but this was also not significant (see Supplementary Material; Text S1, Table S1, Fig. S3). 407 

It is quite possible that the addition of climate variables could have explained further 408 

variation in aNPP. We did not explore this because (a) we expect considerable collinearity 409 

between climate and abundance-weighted trait means (e.g. Ordoñez et al 2009) and (b), our 410 

principal aim was to explore the ability of each trait to explain variation in aNPP rather than 411 

to develop a full, empirical predictive model for aNPP. While an advantage of our study is in 412 

the breath of ecosystem variation sampled, this also trades-off against our ability to 413 

measure and model ecosystem-specific factors and their interactions that are likely to have 414 

more fully explained observed aNPP (e.g. Minden & Kleyer 2015). 415 

 416 

There are a number of possible reasons why LDMC outperformed SLA in our analysis. SLA 417 

exhibits a plastic response to irradiance via changes in leaf thickness such that values can 418 

vary significantly with canopy depth even on the same tree (Hollinger 1989). Thus thin 419 

shaded leaves have high SLA because they optimise light capture rather than being 420 

associated with high soil fertility and therefore higher aNPP (Hodgson et al. 2011). These 421 

erroneous SLA signals may well have contributed to the variation in published database 422 

values and so to poorer performance of SLA in our analysis of database-derived means. 423 

However, if intra-specific trait variation is partly an adaptive response to local conditions, 424 

then one might have expected LDMC to perform less well because it appears to be 425 
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somewhat less plastic than SLA across environmental gradients (Siefert et al. 2014; but see 426 

Roche et al. 2004). Our result is consistent with other evidence. In a study investigating the 427 

response of leaf plant traits to cutting frequency and nitrogen supply among temperate 428 

grass species, many of which also dominated our grassland samples, Pontes et al. (2007) 429 

found that within-species, between treatment-variation in SLA and LDMC was around 14 % 430 

and that LDMC but not SLA was correlated with aNPP. Even where significant intra-specific 431 

variation has been observed, it has proved difficult to explain by abiotic factors (Ordoñez et 432 

al. 2009; Laughlin et al. 2012) often ending up as residual variance rather than predicting 433 

local coupling between trait values and environmental (Albert et al. 2010; Jung et al. 2010). 434 

This suggests that we might not expect a major jump in predictive power by including intra-435 

specific variation alongside inter-specific variation especially when derived from replicated 436 

database measurements rather than in situ plant populations. 437 

 438 

Field measurements versus database values 439 

 440 

Our results indeed showed that including in situ field measurements increased explanatory 441 

power to a greater extent than introducing intra-specific variation via replicated database 442 

values. In situ measurements ought to be a better physiological reflection of the 443 

performance of the particular vegetation stand than database averages, and this was indeed 444 

found to be the case. It is likely that the residual error associated with our best model was in 445 

part attributable to low in situ trait measurement effort. For example Baroloto et al. (2010) 446 

recommended sampling each species at least once in every plot. Even this level of effort 447 

may under-represent the variation that can occur in trait values between leaves on the 448 



21 

 

same plant (Shipley, 1995), between individuals of the same species (Albert et al. 2010) and 449 

throughout the growing season (Pierce et al. 1994;  Gunn et al. 1999; Jagodziński et al 450 

2016). Thus sampling a few individuals in a site at one point in time may lead to 451 

unrepresentative trait values poorly coupled to prevailing conditions. Evidently our level of 452 

in situ sampling effort was sufficient to improve model fit even though our best model still 453 

explained just over 55% of the variation in aNPP.  454 

 455 

The extent to which in situ sampling should focus on capturing inter- or intra-specific 456 

variation depends upon the relative importance of each source of variation. Intra-specific 457 

variation appears to be greater in less species-rich ecosystems and towards the more 458 

extreme end of environmental gradients (Huslof et al. 2013; Siefert et al. 2015; Baroloto et 459 

al. 2010). In the absence of any in situ measurements, trait means must be calculated from 460 

existing databases. Cordlandwehr et al. (2013) showed that for less variable traits such as 461 

LDMC, database values could satisfactorily approximate ecosystem averages but would be 462 

less sensitive to between-patch variation within an ecosystem. Relying solely on database 463 

measurements may therefore only weakly capture trait-environment relationships 464 

(Manning et al. 2015). However, our results indicated that even when derived as database 465 

means, LDMC outperformed SLA in prediction of aNPP.  466 

 467 

Conclusions  468 

 469 

Using finely-resolved plant trait measurements across a representative vegetation 470 

productivity gradient, we show that LDMC was the superior predictor of aNPP compared to 471 
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SLA. Intra-specific variation, as expressed by in situ trait measurements of the two highest 472 

abundance species in each plot, led to improved estimation of aNPP but including trait 473 

variation as expressed in published database trait values did not. Thus, including database-474 

derived intra-specific variation and allowing this to improve model fit is not an effective 475 

substitute for in situ trait measurements. However, since LDMC is much easier to measure 476 

than SLA, our results suggest that for prediction of aNPP, the burden of data collection can 477 

be reduced significantly, thereby offering the prospect of greater scientific understanding 478 

for less cost.     479 
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Figure 1: Maps showing the sample sites in (a) North West England and (b) North Wales. 

a)                                                                                       b)  
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Figure 2: Measured above-ground NPP (aNPP) values across temperate ecosystem types 

sampled in 2013 and 2014. The median is shown as a black point. Boxes indicate the 

interquartile range and the whiskers the range of the measurements. 
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Figure 3: Best fitting model of ln(aNPP) predicted by cover-weighted Leaf Dry Matter 

Content incorporating the effect of database-derived intra-specific variation and including in 

situ trait measurements. R2(m)=0.55. y=x line is shown. 
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Table 1: Details of study sites and plots in which aNPP was measured. Sampling methods are fully described in Supplementary Material. 

Nomenclature for vascular plants follows Stace (1997) and Hill et al. (2008) for bryophytes.  

Site Habitat type Mean 

soil pH 

(0-15cm) 

Management 

status 

Dominant plant 

species 

Number of plots (plot 

size) 

aNPP 

methods 

Beryl’s Wood Broadleaved 

woodland 

4.62 Unmanaged Quercus 

petraea/robur, 

Fraxinus excelsior, 

Betula pendula 

2 (200m2 tree canopy),  

3 (1m2 understorey) 

Understorey 

biomass 

harvest.  

Bryophyte 

mesh. 

Litter buckets. 

Annual woody 

increment 

from tree ring 

core, tree 

height & DBH.  

Red Kite Wood Broadleaved 

woodland 

4.19 Unmanaged Acer pseudoplatanus 1 (200m2 tree canopy), 

2 (1m2 understorey) 

As above. 

Coed 

Dolgarrog 

Broadleaved 

woodland 

3.98 Unmanaged Quercus 

petraea/robur 

1 (200m2 tree canopy), 

2 (1m2 understorey) 

As above. 

Glasgwm Conifer 

plantation 

4.2 30 year old 

Sitka subject to 

Picea sitchensis 1 (200m2 tree canopy), 

2 (1m2 understorey) 

As above. 
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past thinning 

Nant-y-Coed Improved 

grassland 

5.68 Highly 

intensive cattle 

grazing. Cattle 

rotated 

fortnightly 

across heavily 

fertilized 

paddocks.  

Lolium perenne 4  (1m2) Two biomass 

harvests per 

year. 

Blaen-y-Coed Soligenous 

mire 

4.56 Low intensity 

sheep grazing 

with periods 

unmanaged 

Molinia caerulea 2  (1m2) As above. 

Migneint Ombrogenous 

mire 

3.82 Last burnt 30+ 

years ago. Very 

light sheep 

grazing. 

Sphagnum 

capillifolium, 

Eriophorum 

vaginatum 

16 cranked wires 

among 4 patches of 

Sphagnum 

Wire length 

measurements 

over two 

years. 

Nant-y-Brwyn Ombrogenous 

mire 

4.26 Last burnt 30+ 

years ago. Very 

light sheep 

grazing. 

Sphagnum fallax, 

Juncus effusus 

4 (1m2) 

6 cranked wires among 

3 patches of Sphagnum 

Two biomass 

harvests per 

year. 

Wire length 

measurements 

over two 

years. 
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Llyn Serw Ombrogenous 

mire 

3.82 Last burnt 30+ 

years ago. Very 

light sheep 

grazing. 

Calluna vulgaris 3  (1m2 in each of 5, 11, 

30 year old Calluna)  

Total biomass 

harvest for 

growth curve 

construction. 

Capel Curig VB Soligenous 

mire 

4.07 Very light 

sheep and 

cattle grazing. 

Molinia caerulea, 

Sphagnum 

papillosum 

4  (1m2), 

12 cranked wires 

among 4 patches 

Two biomass 

harvests per 

year. 

Wire length 

measurements 

over two 

years. 

Capel Curig AG Acid 

grassland 

4.81 Light sheep 

and cattle 

grazing. 

Deschampsia 

flexuosa, Nardus 

stricta 

4  (1m2) Two biomass 

harvests per 

year. 

Carneddau Montane 

heath 

4.40 Light sheep 

grazing. 

Empetrum nigrum, 

Salix herbacea 

3  (0.25m2) One biomass 

harvest per 

year. 

Juniper Gill Calcareous 

grassland 

7.46 Wild deer and 

rabbit grazed. 

Sesleria caerulea 2  (0.25m2) Two biomass 

harvests per 

year. 

Scar Close Calcareous 

grassland 

- Wild deer and 

rabbit grazed. 

Sesleria caerulea, 

Pteridium aquilinum 

2  (0.25m2) Two biomass 

harvests per 

year. 
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Colt Park Unimproved 

grassland 

5.07 Traditional hay 

meadow; cattle 

and sheep in 

spring then 

shut up for 

summer hay 

growth, then 

aftermath 

grazed. 

Trifolium pratense, 

Anthoxanthum 

odoratum 

4  (0.25m2) Two biomass 

harvests per 

year. 

Hiraethlyn Improved 

grassland 

4.59 Intensive 

sheep grazing. 

Lolium perenne, 

Holcus lanatus 

4  (1m2) Two biomass 

harvests per 

year. 

Ysbyty-Ifan IG Improved 

grassland 

5.67 Intensive cattle 

and sheep 

grazing. 

Lolium perenne, Poa 

trivialis 

4  (1m2) Two biomass 

harvests per 

year. 

Ysbyty-Ifan SG Semi-

improved 

grassland 

5.58 Intensive cattle 

and sheep 

grazing. 

Lolium perenne, 

Holcus lanatus 

4  ( 1m2) Two biomass 

harvests per 

year. 

 


