121 research outputs found

    Errand Into the Wilderness and America: An Analysis of the Effects of Puritan Symbols on the Perceived Purpose of Education in America.

    Get PDF
    Present day America is perceived as immersed in a moral crisis due to certain cultural conditions; that national identity has fractured, resulting in a pervading sense of uncertainty and anxiety about the future; that public schools, as institutions charged with preserving the symbols of national identity and a morality that is the concrete expression of those symbols, have failed and must be reformed; and finally, that only through schooling can America be saved from this current cultural crisis. This rhetorical trajectory has a history that extends back to the Puritans who settled in America during the early seventeenth century and produced what was to become the New England Way, then Yankee Way and finally American Way. Puritans generated a symbolic narrative that assembled, as well as constrained, the possible ways of perceiving and embodying the American identity and a sense of sacred/secular historical mission attached to that identity. This group also supplied the forms by which this symbolic narrative would be given to future generations. The intent of this historical sortie is to explicate these elements within the American psyche by exploring the effects of the symbolism at different points in American history--Puritans during the 1600s and 1700s; the Gilded Age, the period beginning after the Civil War and extending to the first part of the twentieth century when the urban Protestant middle class ascended to cultural dominance; and the present age. A specific and vital operation will be to explore the relationship between the purpose of education (and how this term has shifted in meaning) and the notion of an American identity and morality perceived as crucial to the impulse to view America as having a sacred/secular purpose

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Associations between weight change and biomarkers of cardiometabolic risk in South Asians:secondary analyses of the PODOSA trial

    Get PDF
    Background/Objectives: The association of weight changes with cardiometabolic biomarkers in South Asians has been sparsely studied. Subjects/Methods: We measured cardiometabolic biomarkers at baseline and after 3 years in the Prevention of Diabetes and Obesity in South Asians Trial. We investigated the effect of a lifestyle intervention on biomarkers in the randomized groups. In addition, treating the population as a single cohort, we estimated the association between change in weight and change in biomarkers. Results: Complete data were available at baseline and after 3 years in 151 participants. At 3 years, there was an adjusted mean reduction of 1·44 kg (95% confidence interval (95% CI): 0.18–2.71) in weight and 1.59 cm (95% CI: 0.08–3.09) in waist circumference in the intervention arm as compared with the control arm. There was no clear evidence of difference between the intervention and control arms in change of mean value of any biomarker. As a single cohort, every 1 kg weight reduction during follow-up was associated with a reduction in triglycerides (−1.3%, P=0.048), alanine aminotransferase (−2.5%, P=0.032), gamma-glutamyl transferase (−2.2%, P=0.040), leptin (−6.5%, P&lt;0.0001), insulin (−3.7%, P=0.0005), fasting glucose (−0.8%, P=0.0071), 2-h glucose (−2.3%, P=0.0002) and Homeostatic Model Assessment of insulin resistance (HOMA-IR: −4.5%, P=0.0002). There was no evidence of associations with other lipid measures, tissue plasminogen activator, markers of inflammation or blood pressure. Conclusions: We demonstrate that modest weight decrease in SAs is associated with improvements in markers of total and ectopic fat as well as insulin resistance and glycaemia in South Asians at risk of diabetes. Future trials with more intensive weight change are needed to extend these findings

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Birds of Two Oceans? Trans-Andean and Divergent Migration of Black Skimmers (Rynchops niger cinerascens) from the Peruvian Amazon

    Get PDF
    We are grateful for assistance from John Terborgh, Antonio Guerra Rosas, Marcos Maguiña, Inés Nole, John Takekawa, Lisa Ferguson, Juan Kapeshi, Nikanor Kapeshi, Cathy Bykowsky, Chi (Tim) Lam, Scott Robinson, Fabrice Schmitt, and Cesar Flores. Alex Jahn, Ugo Mellone, Sergio Lambertucci and one anonymous reviewer provided comments that helped improve the manuscript.Seasonal flooding compels some birds that breed in aquatic habitats in Amazonia to undertake annual migrations, yet we know little about how the complex landscape of the Amazon region is used seasonally by these species. The possibility of trans-Andes migration for Amazonian breeding birds has largely been discounted given the high geographic barrier posed by the Andean Cordillera and the desert habitat along much of the Pacific Coast. Here we demonstrate a trans-Andes route for Black Skimmers (Rynchops niger cinerascens) breeding on the Manu River (in the lowlands of Manu National Park, Perú), as well as divergent movement patterns both regionally and across the continent. Of eight skimmers tracked with satellite telemetry, three provided data on their outbound migrations, with two crossing the high Peruvian Andes to the Pacific. A third traveled over 1800 km to the southeast before transmissions ended in eastern Paraguay. One of the two trans-Andean migrants demonstrated a full round-trip migration back to its tagging location after traveling down the Pacific Coast from latitude 9° South to latitude 37° S, spending the austral summer in the Gulf of Arauco, Chile. This is the first documentation of a trans-Andes migration observed for any bird breeding in lowland Amazonia. To our knowledge, this research also documents the first example of a tropical-breeding waterbird migrating out of the tropics to spend the non-breeding season in the temperate summer, this being the reverse pattern with respect to seasonality for austral migrants in general.Yeshttp://www.plosone.org/static/editorial#pee

    Effect of a 2-week interruption in methotrexate treatment on COVID-19 vaccine response in people with immune-mediated inflammatory diseases (VROOM study): a randomised, open label, superiority trial

    Get PDF
    Background: Methotrexate is the first-line treatment for immune-mediated inflammatory diseases and reduces vaccine-induced immunity. We evaluated if a 2-week interruption of methotrexate treatment immediately after COVID-19 booster vaccination improved antibody response against the S1 receptor binding domain (S1-RBD) of the SARS-CoV-2 spike protein and live SARS-CoV-2 neutralisation compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. Method: We did a multicentre, open-label, parallel-group, randomised, superiority trial in secondary-care rheumatology and dermatology clinics in 26 hospitals in the UK. Adults (aged ≥18 years) with immune-mediated inflammatory diseases taking methotrexate (≤25 mg per week) for at least 3 months, who had received two primary vaccine doses from the UK COVID-19 vaccination programme were eligible. Participants were randomly assigned (1:1) using a centralised validated computer program, to temporarily suspend methotrexate treatment for 2 weeks immediately after COVID-19 booster vaccination or continue treatment as usual. The primary outcome was S1-RBD antibody titres 4 weeks after COVID-19 booster vaccination and was assessed masked to group assignment. All randomly assigned patients were included in primary and safety analyses. This trial is registered with ISRCTN, ISRCTN11442263; following a pre-planned interim analysis, recruitment was stopped early. Finding: Between Sept 30, 2021, and March 7, 2022, we screened 685 individuals, of whom 383 were randomly assigned: to either suspend methotrexate (n=191; mean age 58·8 years [SD 12·5], 118 [62%] women and 73 [38%] men) or to continue methotrexate (n=192; mean age 59·3 years [11·9], 117 [61%] women and 75 [39%] men). At 4 weeks, the geometric mean S1-RBD antibody titre was 25 413 U/mL (95% CI 22 227–29 056) in the suspend methotrexate group and 12 326 U/mL (10 538–14 418) in the continue methotrexate group with a geometric mean ratio (GMR) of 2·08 (95% CI 1·59–2·70; p<0·0001). No intervention-related serious adverse events occurred. Interpretation: 2-week interruption of methotrexate treatment in people with immune-mediated inflammatory diseases enhanced antibody responses after COVID-19 booster vaccination that were sustained at 12 weeks and 26 weeks. There was a temporary increase in inflammatory disease flares, mostly self-managed. The choice to suspend methotrexate should be individualised based on disease status and vulnerability to severe outcomes from COVID-19. Funding: National Institute for Health and Care Research

    Blood transcriptional biomarkers of acute viral infection for detection of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy study

    Get PDF
    Background We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing.Methods We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≥18 years) at St Bartholomew’s Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for “viral infection”, “transcriptome”, “biomarker”, and “blood”. We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity.Findings We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27–47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91–0·99), sensitivity 0·84 (0·70–0·93), and specificity 0·95 (0·85–0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91–0·95).Interpretation Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge

    Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response

    Get PDF
    Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination
    corecore