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New loci for body fat percentage reveal link
between adiposity and cardiometabolic disease risk
Yingchang Lu et al.#

To increase our understanding of the genetic basis of adiposity and its links to cardiometa-

bolic disease risk, we conducted a genome-wide association meta-analysis of body fat per-

centage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance

(Po5� 10� 8), of which eight were previously associated with increased overall adiposity

(BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel asso-

ciations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a

primary association with adiposity, while five loci showed larger effects on BMI than on BF%,

suggesting association with both fat and lean mass. In particular, the loci more strongly

associated with BF% showed distinct cross-phenotype association signatures with a range of

cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
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L
arge-scale meta-analyses of genome-wide association studies
(GWAS) for adiposity traits and obesity risk have identified
at least 160 loci that contribute to body weight and fat

distribution in adults and children of diverse ancestry1–20. Studies
of overall adiposity, assessed by body mass index (BMI), have
mainly implicated genes that provide support for a role of the
central nervous system (CNS) in obesity susceptibility1–6,10,19,
whereas genetic loci associated with body fat distribution,
assessed by waist-to-hip ratio (WHR), seem enriched for
genes involved in adipocyte metabolism9,11,20. Although these
commonly studied adiposity traits are easily collected in large
populations and thus allow statistically well-powered meta-
analyses, they represent heterogeneous phenotypes, for example,
people with the same BMI or WHR may vary in BF%, translating
in differences in cardiometabolic risk21,22.

To assess the genetic contribution to adiposity, we previously
performed the first GWAS for BF% in nearly 40,000 individuals
and identified two new loci (near IRS1 and SPRY2), not identified
in earlier large-scale GWAS for BMI13. Follow-up analyses of
these loci provided strong evidence for IRS1 to be involved in
tissue-specific body fat storage and subsequent effects on
cardiometabolic disease, such as type 2 diabetes (T2D) and
coronary artery disease (CAD)13. While little is known about
SPRY2, the Spry1 homolog in mice has been implicated in
adipose tissue differentiation23. Taken together, these loci for
BF% pointed towards new mechanisms involved in adipocyte
metabolism that differ from the BMI-associated loci that
suggested a role for the CNS13,19.

Here, we have extended our study to include more than
100,000 individuals and continue to discover novel genetic loci
associated with BF% that have not been identified before for
any of the commonly studied adiposity traits1–20. Through an
in-depth integrative characterization, including cross-trait
association analyses, expression quantitative trait loci (eQTL),
pathway and network analyses, regulome analyses and transgenic
drosophila models, we show that these loci provide new
insights into the biology that underlies adiposity and related
cardiometabolic health, by specifically highlighting peripheral
physiological mechanisms.

Results
Analyses in 4100,000 individuals identify 12 loci for BF%.
In our primary meta-analysis, we combined results of genetic

associations with BF% for up to 100,716 individuals from 43
GWAS (n up to 76,137) and 13 MetaboChip studies (n up to
24,582), predominantly of European ancestry (n up to 89,297),
but also of non-European ancestry (n up to 11,419) populations
(Supplementary Table 1 and Supplementary Fig. 1). As women
have on average a higher BF% than men, we also stratified
meta-analyses by sex (nmen up to 52,416; nwomen up to 48,956).
In secondary meta-analyses, we combined data from European-
ancestry populations only (n up to 89,297; nmen up to 44,429;
nwomen up to 45,525) to reduce genotypic and phenotypic
heterogeneity that may have been introduced in the overall
analyses by combining diverse ancestries.

In our primary meta-analysis of men and women combined,
single-nucleotide polymorphisms (SNPs) in 10 independent loci
reached genome-wide significance (GWS, Po5� 10� 8; Table 1
and Supplementary Fig. 2), including the three loci that we
identified before13. Two additional loci, near PLA2G6 and in
CRTC1, were identified in men-specific and women-specific
analyses, respectively (Table 1 and Supplementary Fig. 3). The
European-ancestry-only analyses revealed the same loci, but no
additional ones (Supplementary Tables 4–6, Supplementary
Figs 4 and 5). We did not identify evidence of secondary
signals at any of the 12 loci.

Two (near IRS1 and SPRY2) of the 12 loci had been first
identified in our previous genome-wide screen for BF% (ref. 13),
and six loci (in/near FTO, MC4R, TMEM18, TOMM40/APOE,
TUFM/SH2B1 and SEC16B) had been first reported for
association with BMI1–6,10. Four of the 12 loci, in or near
COBLL1/GRB14, IGF2BP1, PLA2G6 and CRTC1, have not been
associated with an overall adiposity trait (such as BMI, BF%,
obesity risk) before (Fig. 1 and Supplementary Fig. 6). Of note,
the COBLL1/GRB14 locus was previously established as a locus
for body fat distribution independent of overall adiposity,
assessed by WHRadjBMI

11, and the CRTC1 locus has been first
reported for its association with age at menarche24 (Table 2,
Supplementary Table 7, See also ‘Cross-phenotype association’
section).

Effect sizes and explained variance. Index SNPs in the 12
established loci increase BF% by 0.024 to 0.051 s.d. per allele
(equivalent to 0.16 to 0.33% in BF%, Table 1, Fig. 2). Given the
high correlation between BF% and BMI, the BF% increasing
alleles of each of the 12 loci are associated with increased

Table 1 | Loci reaching genome-wide significance (Po5� 10�8) for body fat percentage in all ancestry analyses, sorted
according to significance in the overall analysis.

SNP Chr. Position
(bp)

Nearest
gene

Other
nearby
genes of
interest

Fat%
increasing
allele

Fat%
increasing

allele
frequency*

Other
allele

All ancestry All ancestry-men All ancestry-women Sex
difference

Per allele
change in

body fat %*

P Explained
variance

N Per allele change
in body fat %w

P Explained
variance

N Per allele change
in body fat %w

P Explained
variance

N P

b s.e. b s.e. b s.e.

rs1558902 16 52,361,075 FTO A 40% T 0.051 0.005 3.8E� 27 0.125% 99,328 0.051 0.0064 3.8E� 15 0.122% 51,498 0.050 0.0067 7.2E� 14 0.120% 48,486 0.96
rs2943652 2 226,816,690 IRS1z C 36% T 0.034 0.005 1.5E� 12 0.052% 99,323 0.046 0.0065 1.3E� 12 0.098% 51,492 0.023 0.0068 5.6E�04 0.025% 48,487 0.013
rs6567160 18 55,980,115 MC4R C 25% T 0.034 0.005 1.3E� 10 0.044% 100,642 0.042 0.0072 6.1E�09 0.065% 52,380 0.029 0.0076 1.1E�04 0.032% 48,918 0.23
rs6755502 2 625,721 TMEM18 C 83% T 0.039 0.006 1.4E� 10 0.043% 99,855 0.027 0.0084 1.6E�03 0.020% 51,778 0.052 0.0087 2.7E�09 0.075% 48,733 0.034
rs6738627 2 165,252,696 COBLL1 GRB14 A 37% G 0.030 0.005 5.7E�09 0.043% 80,196 0.035 0.0073 1.9E�06 0.057% 39,698 0.026 0.0072 3.8E�04 0.031% 41,153 0.36
rs693839 13 79,856,289 SPRY2z C 32% T 0.028 0.005 6.6E�09 0.035% 100,190 0.034 0.0067 3.6E�07 0.050% 51,906 0.021 0.0069 2.4E�03 0.019% 48,940 0.17
rs6857 19 50,084,094 TOMM40 APOE,

APOC1
SH2B1,
APOB48R,

C 83% T 0.048 0.008 6.8E�09 0.065% 68,857 0.035 0.0112 1.8E�03 0.035% 35,868 0.058 0.0118 7.3E�07 0.096% 33,644 0.15

rs4788099 16 28,763,228 TUFM ATXN2L,
SBK1,
SULT1A2

G 38% A 0.027 0.005 1.2E�08 0.034% 100,659 0.032 0.0064 6.7E�07 0.048% 52,385 0.024 0.0067 3.6E�04 0.027% 48,929 0.37

rs9906944 17 44,446,419 IGF2BP1 C 67% T 0.033 0.006 2.9E�08 0.049% 74,338 0.025 0.0083 2.9E�03 0.027% 38,242 0.036 0.0084 1.5E�05 0.059% 36,751 0.31
rs543874 1 176,156,103 SEC16B G 19% A 0.032 0.006 4.5E�08 0.031% 100,705 0.028 0.0079 3.7E�04 0.024% 52,410 0.037 0.0081 5.8E�06 0.042% 48,951 0.43

Loci identified in sex-specific all-ancestry analyses
rs3761445 22 36,925,357 PLA2G6 PICK1 G 41% A 0.024 0.005 1.7E�07 0.029% 99,614 0.037 0.0063 2.5E�09 0.068% 51,687 0.017 0.0066 0.013 0.013% 48,114 0.020
rs757318 19 18,681,308 CRTC1 C 50% A 0.024 0.005 2.1E�07 0.030% 98,814 0.012 0.0064 0.054 0.008% 51,484 0.037 0.0067 4.8E�08 0.067% 47,986 0.0075

Chr., chromosome; positions (bp) according to Build 36; and allele coding based on the positive strand.
*Based on all-ancestry sex-combined analyses.
wEffects sizes are expressed in s.d., based on inverse normally transformed outcomes (mean 0, s.d. 1).
zLoci first reported in the previous genome-wide association study of body fat percentage13 (PMID:21706003).
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Figure 1 | Regional plots of the four newly identified loci that reached genome-wide significant association with body fat percentage. Regional plots of

the four newly identified loci that reached genome-wide significant association with body fat percentage in all-ancestry analyses, in men and women

combined for the COBLL1/GRB14 and IGF2BP1 loci (a,b), and separately for the CRTC1 and PLA2G6 (c,d). Each symbol represents the significance (P value on

a � log10 scale) of a SNP with BF% as a function of the SNP’s genomic position (NCBI Build 36). For each locus, the index SNP is represented in the purple

colour. The colour of all other SNPs indicates LD with the index SNP (estimated by CEU r2 from the HapMap Project data Phase II CEU). Recombination

rates are also estimated from International HapMap Project data, and gene annotations are obtained from the UCSC Genome Browser. GWAS catalogues

SNPs with P value o5� 10�8 are shown in the middle panel. Different shapes denote the different categories of the SNPs: up-triangle for framestop or

splice SNPs, down-triangle for nonsynonymous SNPs, square for coding or untranslated region (UTR) SNPs; star for SNPs in tfbscons region, square filled

with ‘X’ symbol for SNPs located in mcs44placental region and circle for SNPs with no annotation information.
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BMI (Fig. 2, Table 2, and Supplementary Table 7). However,
loci that had been previously identified for BMI, have larger
effects (expressed in s.d. per allele) on BMI than on BF%,
except the TOMM40/APOE locus, which has a substantially more
pronounced effect on BF% than on BMI25 (Fig. 2). The
TOMM40/APOE locus, together with the loci previously (IRS1
and SPRY2) and newly (COBLL1/GRB14, IGF2BP1, PLA2G6
and CRCT1) identified for BF% all have larger effects on BF%

than on BMI (Fig. 2). This division based on effect sizes,
illustrated in Fig. 2, suggests that IRS1, SPRY2, COBLL1/GRB14,
TOMM40/APOE, IGF2BP1, PLA2G6 and CRTC1 affect adiposity
in particular, which is not fully captured by BMI (which
represents both lean and fat mass).

Of the 12 loci, four showed significant sex-specific effects. For
the loci near IRS1 and PLA2G6, the effect in men was twice as
large as in women, whereas for the TMEM18 and CRTC1 loci the
effect was two- to threefold larger in women than in men
(Table 1). As the European-ancestry-only populations represent
the vast majority (90%) of the total sample, effects sizes
from European only and all-ancestry analyses were similar
(Supplementary Tables 5 and 8).

In aggregate, the 12 loci explained 0.58% of the variance in
BF% in men and women combined. Because of the sex-specific
effects of four loci, the explained variance was slightly higher,
when estimated in men (0.62%) and women (0.61%) separately.
Individually, the FTO locus explained the most variance of all
identified loci (0.12%) (Table 1).

Cross-phenotype association with cardiometabolic traits. To
gain insight in how the BF% loci affect anthropometric and
cardiometabolic traits and comorbidities, we performed look-ups
in the most recent large-scale GWAS meta-analyses from the
GIANT (Genetic Investigation of ANthropometric Traits) con-
sortium (WHRadjBMI and height)20,26, the SAT-VAT consortium
(abdominal visceral adipose tissue (VAT) and subcutaneous
adipose tissue (SAT))27, the LEPgen consortium (circulating
leptin), the GLGC (high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C) and triglycerides
(TG))28, the MAGIC (fasting glucose and fasting insulin)29,
DIAGRAM (T2D)30 and CARDIoGRAMplusC4D (CAD)31.
To account for multiple testing, associations were considered
statistically significant if P values were o5.2� 10� 4 (Bonferroni-
corrected P¼ 0.05/96 (12 SNP * eight trait groups)).

Associations with anthropometric and adiposity traits. The BF%
increasing alleles for 11 of the 12 loci were associated with

Table 2 | Cross-phenotype associations: associations signatures of 12 established body fat percentage loci for anthropometric
and cardiometabolic traits through look-ups in large-scale genetics consortia.

Nearby gene FTO IRS1 MC4R TMEM18 COBLL1/GRB14 SPRY2 TOMM40/APOE TUFM/SH2B1 IGF2BP1 SEC16B PLA2G6/PICK1* CRTC1*

SNP rs1558902 rs2943652w rs6567160 rs6755502 rs6738627w rs693839 rs6857 rs4788099 rs9906944w rs543874 rs3761445 rs757318

Fat%-increasing
allele
(frequency %)

A (40%) C (36%) C (25%) C (83%) A (37%) C (32%) C (83%) G (38%) C (67%) G (19%) G (41%) C (50%)

Trait Consortium
(Max. N)z

Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Men Women Men Women

Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P Effect
per fat%

increasing
allele

P

Body fat
percentage
(INV)

Current study
(100,705)

0.051 3.8E� 27 0.034 1.5E� 12 0.034 1.3E� 10 0.039 1.4E� 10 0.030 5.7E�09 0.028 6.6E�09 0.048 6.8E�09 0.0269 1.2E�08 0.0333 2.9E�08 0.0315 4.5E�08 0.0374 2.5E�09 0.017 0.01 0.0123 0.054 0.0366 4.8E�08

BMI (INV) GIANT
(339,148)

0.081 1E� 156 0.014 2.4E�06 0.056 6.7E� 59 0.060 2.0E� 53 0.011 6.1E�04 0.010 3.1E�03 0.021 1.0E�04 0.031 1.1E� 24 0.010 0.018 0.050 2.3E�40 0.012 3.2E�03 0.006 0.14 0.013 2.2E�03 0.021 1.7E�07

Circulating
leptin
(Ln ng ml� 1)

LEPgen
(32,158)

0.033 1.8E�07 0.020 1.9E�03 0.027 3.9E�04 0.026 1.7E�03 0.036 8.3E�07 0.012 0.097 0.026 0.016 0.027 3.9E�05 0.013 0.072 0.009 0.28 0.016 0.12 0.016 0.051 �0.009 0.41 �0.001 0.92

Subcutaneous
adipose tissue

SAT-VAT
(10,557)

þ 6.2E�07 þ 9.2E�04 þ 0.093 þ 6.1E�05 þ 0.022 þ 0.009 þ 0.0037 þ 0.036 þ 0.70 þ 0.097 þ 0.13 þ 0.22 � 0.26 þ 0.11

Visceral
adipose tissue

SAT-VAT
(10,557)

þ 4.6E�04 þ 0.60 þ 0.13 þ 0.05 þ 0.51 þ 0.077 þ 2.1E�04 þ 0.36 þ 0.24 þ 0.53 þ 0.017 þ 0.09 � 0.66 þ 0.12

WHRadjBMI

(INV)
GIANT
(209,997)

0.004 0.26 0.000 0.99 �0.003 0.54 �0.008 0.07 �0.021 2.2E�08 0.002 0.55 0.024 1.2E�04 0.002 0.49 0.010 0.037 �0.002 0.69 0.003 0.60 �0.005 0.29 �0.002 0.73 �0.008 0.08

Height (Z) GIANT
(253,217)

�0.010 1.2E�03 �0.003 0.38 0.025 2.0E� 12 0.006 0.16 0.001 0.72 0.007 0.038 �0.006 0.17 0.002 0.42 �0.016 1.1E�06 0.006 0.091 0.016 8.0E�04 0.010 0.015 0.005 0.31 0.003 0.53

Triglycerides
(INV)

GLGC
(177,828)

0.018 2.3E�06 �0.027 1.3E� 13 0.012 8.4E�04 0.008 0.027 �0.017 3.3E�05 �0.002 0.46 �0.054 4.6E� 19 �0.002 0.57 0.003 0.84 0.004 0.21 � 2.5E�03 � 0.018 þ 0.36 þ 0.71

HDL-Cholesterol
(INV)

GLGC
(187,131)

�0.018 2.7E�07 0.032 8.2E� 17 �0.026 2.9E�09 �0.013 0.008 0.019 4.9E�05 �0.001 0.91 0.067 2.6E� 17 �0.012 5.4E�04 �0.012 0.025 �0.011 0.018 þ 0.054 þ 0.044 � 0.32 þ 0.56

LDL-Cholesterol
(INV)

GLGC
(173,055)

�0.002 0.45 �0.006 0.14 0.001 0.86 �0.010 0.024 �0.012 0.035 0.005 0.20 �0.192 5.1E� 110 �0.003 0.41 0.003 0.39 �0.010 0.068 � 0.43 � 0.51 � 0.40 � 0.76

Fasting glucose
(mmol l� 1)

MAGIC
(120,901)

0.006 0.004 �0.004 0.084 0.006 0.030 0.006 0.031 �0.001 0.58 �0.001 0.83 0.010 0.012 0.000 0.92 0.002 0.59 0.005 0.044 �0.002 0.50 0.000 0.89 0.003 0.26 0.003 0.37

Fasting insulin
(Ln pmol l� 1)

MAGIC
(85,501)

0.019 1.8E� 12 �0.015 3.8E�08 0.008 0.018 0.007 0.062 �0.009 0.004 0.001 0.80 0.003 0.49 0.008 0.003 0.000 0.97 0.012 5.1E�04 �0.009 0.02 0.000 0.95 0.007 0.08 0.008 0.021

Type 2 diabetes
(OR)

DIAGRAM
(86,195)

1.120 4.4E� 21 0.920 4.7E� 12 1.070 6.0E�07 1.040 0.005 0.940 2.3E�05 0.980 0.09 1.088 0.0014 1.020 0.11 1.051 7.7E�05 1.020 0.20 0.968 0.03 0.972 0.09 1.008 0.60 1.028 0.12

Coronary artery
disease (OR)

CARDIoGRAM
plusC4D
(213,938)

1.025 0.008 0.971 8.8E�04 1.031 1.9E�03 1.028 0.018 0.982 0.063 0.994 0.51 0.899 5.9E� 11 1.010 0.33 1.045 2.2E�06 0.999 0.96 1.011 0.33 0.998 0.88 1.010 0.50 1.029 0.17

CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome-wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics consortium; DIAGRAM, DIAbetes
Genetics Replication And Meta-analysis consortium; GIANT, Genetic Investigation of ANthropometric Traits consortium; GLGC, Global Lipids Genetics Consortium; INV, inverse-normal transformation
(mean of 0, s.d. of 1); LEPgen, circulating leptin consoritum (Kilpeläinen et al., in preparation); Ln, natural logarithm-transformation; MAGIC, the Meta-Analyses of Glucose and Insulin-related traits
Consortium; OR, odds ratio; SAT-VAT, subcutaneous adipose tissue (SAT)-visceral adipose tissue (VAT) consortium; WHRadjBMI, waist-to-hip ratio adjusted by BMI; Z, z-score transformation (mean of
0, s.d. of 1). The fat percentage (Fat%) increasing allele frequency was based on all-ancestry sex-combined analysis. The ‘þ /� ’ in effect stands for increasing or decreasing phenotypes. The threshold for
a statistically significant association with Bonferroni correction for 13 traits is P¼0.00385 (0.05/13). Colour coding of cells: BF%-increasing shows risk-increasing association with respective
cardiometabolic traits at nominal (faded red) or multiple-testing corrected (solid red) significance. BF%-increasing shows risk-reducing association with respective cardiometabolic traits at nominal (faded
green) or multiple-testing corrected (solid green) significance.
*Results of men and women combined are presented in Supplementary Table 8.
wThe SNP of rs2943646 was used as a proxy for rs2943652 regarding coronary artery disease (R2¼ 1 and D’¼ 1); the SNP of rs2075650 was used as a proxy for rs6857 regarding CAD (R2¼0.88 and
D’¼ 1); the SNP of rs4794018 was used as a proxy for rs9906944 regarding coronary artery disease and type 2 diabetes (R2¼0.9 and D’¼ 1).
zThe maximum sample size invoved in the 12 SNP assocation testing was reported from each respective consortium.
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increased circulating leptin levels (Pbinomial¼ 0.006), of which
four reached statistical significance and another four were
nominally significant (Table 2, Supplementary Table 7). These
results are consistent with the notion that leptin is secreted by
adipocytes proportional to adipose tissue mass.

The BF% increasing alleles of all 12 loci were associated with
increased SAT and VAT (Pbinomial¼ 0.0005), two (FTO and
TMEM18) of which reached significance for association with
SAT, and two (FTO and TOMM40/APOE) with VAT. The BF%
increasing allele of the locus near IRS1 was associated with a
lower VAT/SAT ratio, indicative of a proportionally greater
subcutaneous than visceral fat storage, as we have shown
previously13 (Table 2, Supplementary Table 7).

As expected, most of the identified BF% loci showed no
association with WHRadjBMI, as this trait, because of the
adjustment for BMI, does not correlate with overall adiposity.
Nevertheless, associations with WHRadjBMI for two loci (COBLL1/
GRB14 and TOMM40/APOE) did reach statistical significance.
The COBLL1/GRB14 locus was previously identified as a
WHRadjBMI locus11. We show that it is the BF% increasing
allele that is associated with lower WHRadjBMI, suggestive of a
preferential gluteal rather than abdominal fat storage. Although
the COBLL1/GRB14 association with WHRadjBMI is five times
stronger in women than in men11, we observed no sex difference
for association with BF% (Table 1). For the TOMM40/APOE
locus, it is the BF% increasing allele that is also associated with
increased WHRadjBMI, suggesting that the TOMM40/APOE locus
increases abdominal and overall fat accumulation, at least in part,
in an additive and independent manner. Furthermore, the BF%
increasing allele was also significantly associated with increased
VAT (Table 2, Supplementary Table 7) and liver fat storage
(P¼ 3.4� 10� 4, n¼ 5,550, Methods section).

SNPs in three loci (MC4R, PLA2G6 and IGF2BP1) showed
significant association with height, two of which (PLA2G6 and
IGF2BP1) have not been reported in large GWAS studies before.
Similar to the MC4R locus, the BF% increasing allele of the
PLA2G6 (rs3761445) was associated with greater adult height
(P¼ 6.7� 10� 5; Table 2, Supplementary Table 7). Following up
this variant in data from the Early Growth Genetics Consortium,
we found that the BF% increasing allele was associated with
higher birth weight (P¼ 0.003, n up to 26,836; ref. 32) and greater

prepubertal height (P¼ 0.007, n¼ 13,948; ref. 33), yet not with
growth during or timing of puberty (Supplementary Table 10)33.
In contrast, the BF% increasing allele in IGF2BP1 (rs9906944)
was associated with shorter height (Table 2, Supplementary
Table 7), a cross-phenotype association pattern that is consistent
with the effects of the GH/IGF1 axis34. SNPs in IGF2BP1, in
linkage disequilibrium (LD) with rs9906944 (r2

EUR¼ 0.47), have
been previously implicated with primary tooth development in
infancy35. Consistently, the BF% increasing allele of IGF2BP1
(rs9906944) showed association with a later eruption of the first
tooth (b¼ 0.16 months per allele; P¼ 3.1� 10� 8) and reduced
number of teeth at 1 year (b¼ � 0.14 number of teeth at age 1
year per allele; P¼ 1.1� 10� 7; ref. 35). Even though this suggests
a role in maturation, we found no evidence for association
with pre-pubertal height or pubertal growth and timing
(Supplementary Table 10)33 or age at menarche (b¼ 0.01 age
of menarche (years) per allele; P¼ 0.11; ref. 24). Although this
locus harbours a number of genes, data in rodents suggest
that IGF2BP1 might be a potential candidate gene driving
the associations observed here, as Igf2bp1 knockout mice
demonstrate fetal and postnatal growth retardation36.

Taken together, alleles of each of the 12 loci are associated with
increased BF%, yet their associations with other anthropometric
traits differ, which in turn might result in varying impacts on
cardiometabolic health.

Associations with cardiometabolic traits. Although phenotypic
correlations observed in epidemiological studies have shown that
increased adiposity is associated with increased cardiometabolic
risk, the BF% increasing alleles of identified loci do not
always associate with poorer health outcomes (Table 2 and
Supplementary Table 11). For some loci, the BF% increasing allele
may even have significant protective effects, as we have shown
previously for the locus near-IRS1 (ref. 13).

For the loci in/near FTO, MC4R, TMEM18, TUFM/SH2B1 and
SEC16B, which were all five previously established for BMI, the
observed cross-phenotype associations with cardiometabolic
traits are generally directionally consistent with the phenotypic
correlations. Specifically, their BF% increasing allele is typically
associated with an unfavourable lipid profile and increased
insulin resistance (Table 2, Supplementary Tables 12 and 13).
These cross-phenotype associations translate in increased risk of
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T2D and CAD and higher CRP levels, at least for the FTO,
TMEM18 and MC4R loci (Fig. 2, Table 2, Supplementary
Tables 9,12 and 13).

For the remaining seven loci, which all have a larger effect
on BF% than on BMI (Fig. 2), the cross-phenotype associations
are not always consistent with the phenotypic correlation
between BF% and cardiometabolic traits. For example, the
COBLL1/GRB14 locus was previously identified for its association
with fasting insulin29, TG37, HDL-C37 and,T2D risk30 (Table 2,
Supplementary Tables 12 and 13). However, we show for the first
time that it is the BF% increasing allele that is associated with a
protective effect on cardiometabolic health; that is, with
significantly lower TG levels and higher HDL-C levels,
and a reduced risk of T2D (Table 2, Supplementary Tables 12
and 13). This association signature of the COBLL1/GRB14
locus is consistent with the observation that its BF% increasing
allele is associated with a lower WHRadjBMI, corresponding to a
proportionally lower abdominal and higher gluteal fat
accumulation and, at nominal significance, with SAT but not
with the metabolically more harmful VAT. The COBLL1/GRB14
association signature is similar to that of the near-IRS1
locus (Table 2, Supplementary Tables 12 and 13), and suggest
that the beneficial cardiometabolic effects of the loci near
COBLL1/GRB14 and IRS1 might be mediated through a
favourable influence on body fat distribution, despite increased
adiposity.

The BF% increasing allele of rs6857 near TOMM40/APOE is
significantly associated with increased overall adiposity (BMI),
abdominal adiposity (WHRadjBMI), visceral adipose tissue (VAT)
and liver fat storage, which may be mediating the nominally
significant association with increased fasting glucose and risk of
T2D (Table 2 and Supplementary Table 13). However, most
notably, the BF% increasing allele was also highly significantly
associated with a favourable lipid profile and reduced risk of CAD
(Table 2 and Supplementary Table 12). The associations with
lipid levels seem to be only partially driven by the nearby APOE
locus for which previously highly significant associations with
LDL-C37, CRP38 (both rs4420638), HDL-C and TG (rs439401;
ref. 37) levels have been reported (Supplementary Fig. 7). These
two SNPs (rs4420638, rs439401) are in low LD with each
other (r2

EUR¼ 0.13, D0EUR¼ 0.96), and with the here-identified
TOMM40-rs6857 (r2

EUR¼ 0.39, D0EUR¼ 0.72 and r2
EUR¼ 0.06,

D0EUR¼ 0.77, respectively). Although the APOE-rs4420638 allele
shows evidence of association with BF% (P¼ 3.9� 10� 5), the
association is completely abolished (P¼ 1.00) after conditioning
for TOMM40-rs6857 (Supplementary Table 14). The APOE-
rs439401 SNP, previously associated with HDL-C levels, was not
associated with BF% (P¼ 0.72). Conversely, the TOMM40-rs6857
associations with TG (P¼ 4.5� 10� 19; Pconditional¼ 3.6� 10� 5)
and HDL-C (P¼ 2.6� 10� 17; Pconditional¼ 8.4� 10� 14) remain
significant after conditioning for the lipid-associated APOE SNPs
(rs4420638, rs439401), whereas its association with LDL-C
(P¼ 5.1� 10� 110; Pconditional¼ 0.97) is completely abolished
after adjusting for the APOE-rs4420638 (Supplementary
Table 14). Taken together, these observations show that
associations of TOMM40-rs6857 are independent from the
HDL-C and TG-associated APOE-rs439401 and partially
independent from the LDL-C-associated APOE-rs4420638
(Supplementary Table 14). Another SNP (rs2075650) in this
region, in high LD (r2

EUR¼0.77, D0EUR¼ 0.96) with the
TOMM40-rs6857 and associated with BF% (P¼ 1.4� 10� 7),
has been previously identified for its association with Alzheimer’s
disease39, cognitive function40 and ageing41, with the BF%
increasing allele being associated with reduced risk of
Alzheimer’s disease, slower cognitive decline and increased
longevity.

Although we do not observe association of IGF2BP1-rs9906944
with circulating lipid levels or glycemic traits, interestingly, the
BF% increasing allele is significantly associated with increased
risk of T2D and CAD, and with higher CRP levels (Table 2,
Supplementary Tables 9,12 and 13).

The sex-specific effect of PICK1/PLA2G6-rs3761445 does not
translate in sexual dimorphic associations with other traits
(Table 2, Supplementary Tables 12 and 13). Interestingly, the
BF% increasing allele is associated with a favourable lipid profile;
in particular with lower TG levels (P¼ 8.1� 10� 12) and higher
HDL-C levels (P¼ 3.9� 10� 6, Supplementary Table 12), but no
association with CAD risk was observed (Supplementary
Table 12). The PICK1/PLA6G2-rs3761445 is in moderate LD
with SNPs identified before for nevus count (rs2284063,
r2

EUR¼ 0.67, D0EUR¼ 0.90; ref. 42) and melanoma risk
(rs738322, r2

EUR¼ 0.77, D0EUR¼ 0.98; refs 42,43). Consistently,
the rs3761445 BF% increasing allele is associated with a lower
number of cutaneous nevi (� 0.067 nevi/allele, P¼ 9.4� 10� 6;
ref. 43) and reduced melanoma risk (OR¼ 0.86 per allele,
P¼ 5.3� 10� 10; ref. 44).

The BF% increasing allele of CRTC1-rs757318, which showed a
significantly stronger association in women than men, was not
associated with any of the cardiometabolic traits in either sex-
stratified or sex-combined results. Rs757318 is in moderate LD
(r2

EUR¼ 0.57, D0EUR¼ 1) with another CRTC1 SNP (rs10423674)
that was previously established for age at menarche24 and,
consistently, also the rs757318 BF% increasing allele was
significantly associated with earlier age at menarche (b¼ � 0.03
years per allele; P¼ 2.4� 10� 10; ref. 24).

Functional annotation of genome-wide significant loci. The
causal genes and/or variants underlying most of the BF%
associated loci remain unknown. For the 12 genome-wide
significant loci, and also for putative loci (Po1� 10� 5), we used
multiple complementary approaches to prioritize candidate genes
and/or variants and to elucidate the mechanisms involved in body
fat regulation. These approaches include identification of nearby
coding variants or copy-number variants (CNVs), cis-eQTL
analysis, epigenetic marker and functional regulatory genomic
element analysis, pathway and tissue enrichment analysis, and a
transgenic Drosophila model.

Coding variants and CNV analysis. Among the 12 index SNPs,
only rs4788099 near SH2B1 was in high LD with seven coding
variants (r2

EUR40.7) in nearby genes (APOBR, SH2B1 and
ATP2A1; Supplementary Table 15, Methods section). Two of
these seven variants were non-synonymous, of which, one,
Thr484Ala (rs7498665) in SH2B1, was in perfect LD with our
index SNP. Thr484Ala shows a high degree of conservation, but
was predicted to be functionally benign by PolyPhen and
tolerated by SIFT. None of the other 11 index SNPs were in
high LD with coding or CNVs.

eQTL analysis. We examined cis-associations between each
index SNP and gene expression of transcripts within 1 Mb-region
flanking the respective SNP (Supplementary Tables 16 and 17,
Methods section). As shown previously13, the BF% increasing
allele of rs2943652 near IRS1 is associated with increased IRS1
expression in omental and subcutaneous fat. SNPs within the
same locus (LD r2

EUR40.95) have also been shown to be
associated with increased IRS1 expression in skeletal muscle45.
We also identified significant (Po1� 10� 5 or 5% FDR) eQTLs
for other BF% associated loci, even after conditioning for the
most significant SNP-transcript association in the regions. The
BF% increasing allele of COBLL1/GRB14-rs6738627 is associated
with lower expression of GRB14, whereas there is no evidence of
association with COBLL1 expression. The BF% increasing allele
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for PLA2G6/MAFF-rs3761445 is associated with lower expression
of MAFF and TMEM184B in omental and subcutaneous fat.
TUFM/SH2B1-rs4788099 is associated with the expression of a
number of genes, such as TUFM (blood), APOBR (blood), SBK1
(blood), SULT1A2 (omental and subcutaneous fat) and SH2B1
(omental fat).

Epigenetic marker and functional regulatory genomic element
analysis. We examined the overlap of 746 variants in LD
(r2

CEU40.70) with the 12 index SNPs with regulatory elements in
brain, blood, liver, adipose and pancreatic islets from the
ENCODE Consortium and Roadmap Epigenomic Projects
(Supplementary Table 18). Across loci, 179 (24%) variants
showed evidence of being located in a regulatory element as
defined by overlapping variants in two or more data sets from the
same tissue (Supplementary Table 19). Promoter variants, located
within 2 kb of a transcription start site, overlapped with an
average of 22 regulatory elements, while more distal variants
(42 kb) overlapped with an average of nine elements.

Two of the distal variants with the greatest amount of
regulatory overlap were rs4808844 and rs4808845 (43 and 41
elements, respectively; Supplementary Table 19). These variants
are located 58 bp apart in intron 1 of CRTC1 and overlap evidence
of open chromatin, histone marks that are characteristic of active
transcription regulation and Pol2 binding (Fig. 3a). We found
that rs4808844 was significantly associated (P¼ 0.036) with Pol2
binding signal strength (Fig. 3b). In addition, DNaseI hypersen-
sitivity signal in this region has been shown to negatively correlate
with CRTC1 and CRLF1 transcription levels across many cell
types46. These data suggest that rs4808844 and rs4808845, both in
high LD (r2

CEU¼ 0.76 and 0.79, respectively) with our index SNP
(rs757318), may influence the transcription of these and/or other
nearby genes.

We further characterized variants overlapping with regulatory
elements at each of the 12 loci using RegulomeDB, and two loci
stood out. In the TUFM-SH2B1 region, three SNPs (rs4788084,
rs1074631 and rs149299) in LD (r2

CEU¼ 0.82, 0.76 and 0.75,
respectively) with rs4788099 are located in an EBF1-binding
protein ChIP-seq signal in lymphoblastoid cells. In addition,
rs4788084 is located within an EBF1-binding motif. EBF1 is
involved in the thalamic axon projection into the neocortex47 and
the genetic variants around rs4788099 might affect the regulation
of EBF1 of the nearby SH2B1 (ref. 48). In the PLA2G6/PICK1
region, rs4384 in LD with rs3761445 (r2

EUR¼ 0.73) overlapped
with more elements (50 elements in four tissues, Supplementary
Table 19) than any other distal variant. This variant is
located in a HEN1-binding motif with evidence of a DNase
footprint in multiple cell types (Supplementary Fig. 8). HEN1
is a transcription factor potentially involved in the CNS
development49.

Pathway, network and tissue-enrichment analysis. To test for
enrichment and define pathways and networks between the genes
harboured by the 12 GW-significant loci and 31 loci with putative
evidence (Po1� 10� 5) of association with BF%, we applied a
number of approaches (see Methods section). Neither DEPICT
(data-driven enrichment prioritized integration for complex
traits)50 nor Ingenuity IPA identified pathways, tissues or
networks that were significantly enriched among the genes
across the 43 loci (Supplementary Tables 20–22). Also, GRAIL
(Gene Relationships Among Implicated Loci), which searches the
published literature to identify relationships between genes, and
DAPPLE (Disease Association Protein–protein Link Evaluator),
which tests for protein–protein interactions, did not identify
significant connection between any of the genes in the identified
loci. Their limited power may be due to the relatively small
number of loci identified in this meta-analyses or to limited
knowledge related to adipogenesis51.

Experimental follow-up of candidate genes in Drosophila. We
used Drosophila as a fast and inexpensive model to help prioritize
which genes within the identified loci are the most likely
candidates to underlie the observed associations.

To gain first insights in the potential candidacy of the genes
located within the 12 BF% associated loci, we performed a
look-up in data from a genome-wide transgenic RNAi screen for
fat content in adult Drosophila52. In that screen, whole-body TG,
also in Drosophila the major lipid storage form, were used as a
direct measure of fly adiposity upon activation of a heat shock-
inducible Hsp70-GAL4 system. As such, transgenic fly lines were
made to test the adiposity regulating potential of 10,489 of the
B14,000 annotated Drosophila protein coding genes. Of the 80
genes located within a 1 Mb-window of each of the 12 index
SNPs, 44 Drosophila orthologues were available, yet, 12 of these
44 transgenic RNAi fly lines were too weak to be screened. Of the
remaining 32 fly lines, 15 fly lines had substantially lower
(42 s.d. less) whole-body TG than the wild-type flies, whereas
five fly lines showed higher TG (42 s.d. more) (Supplementary
Table 23). Next, we selected one to three candidate genes within
each of the 12 loci based on their potential role in adipocyte
metabolism. We knocked down their corresponding orthologues
in Drosophila that were subsequently exposed to a high-sugar diet
(Supplementary Table 24), as described before53. Both Drosophila
experiments pinpoint the SPRY2 (or sty) as the potential causal
gene within the locus; that is, knockdown flies for sty have
significantly lower whole-body TG levels than wild-type flies.
While the genome-wide transgenic RNAi screen pointed towards
the CRTC1 gene in the CRTC1 locus, we could not confirm a role
for CRTC1 in the knockdown experiment.

Established loci and body fat percentage. The most recent
GWAS meta-analysis for BMI, including nearly 340,000 indivi-
duals, identified 97 loci that reached GWS19. Each of the 97
BMI-associated SNPs showed directionally consistent association
with BF% (Pbinomalo1� 10� 4), 71 of which also reached
nominal statistical significance (Supplementary Table 25). One
of the reasons for the non-significance for the remaining loci
might be insufficient power as the current final meta-analysis
sample size for BF% was only one-third of that for BMI.

Of the 12 loci previously identified through GWAS for extreme
and early-onset obesity7,12,54,55, 11 showed directionally
consistent association with BF% (Pbinomalo0.006), of which five
also reached nominal statistical significance (Supplementary
Table 25).

Discussion
Our meta-analysis of data from more than 100,000 individuals
identified 12 loci significantly associated with BF%. While a
recent GWAS including more than 340,000 individuals reported
nearly 100 loci associated with BMI, a commonly used proxy
measure for overall adiposity, four (SPRY2, IGF2BP1, PLA2G6
and CRTC1) of the 12 BF% associated loci did not reach GWS for
BMI, despite the enormous sample size19. This observation most
likely reflects the heterogeneity of BMI as a marker of overall
adiposity and emphasizes the increased statistical power of more
precisely measured phenotypes.

The 12 BF% associated loci divide into two distinct groups.
The first group comprises the five loci (FTO, MC4R, TMEM18,
SEC16B and SH2B1) of which the association is stronger with
BMI than with BF%, suggesting that they affect both fat mass
and lean mass. All five loci have been identified and described
in detail before in relation with BMI5,10,19. Their associations
with cardiometabolic outcomes are predictable, reflecting the
phenotypic correlations with BF%; that is, their BF% increasing
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alleles are associated with an unfavourable glycemic and lipid
profile and with an increased risk of T2D and CVD.

The second group, comprising the remaining seven loci
(IRS1, SPRY2, TOMM40/APOE, CRCT1, PLA2G6, IGB2BP1 and
COBLL1/GRB14), all show a more pronounced effect on BF%
than on BMI, suggesting a specific effect on adiposity rather than
on overall body mass. Most notably, the association patterns with
cardiometabolic traits of this group of loci, as opposed to the first
group, often do not reflect the phenotypic correlations. For
example, as we have described before, the BF% increasing allele of
the index SNP 500 kb upstream of IRS1, which affects IRS1
expression, is associated with a favourable cardiometabolic risk
profile, including a reduced risk of T2D and CVD13. We showed
that this association signature, which goes against the phenotypic
correlations, could be explained by an effect on fat distribution,
as the BF% increasing allele was associated with increased
subcutaneous, but not with the metabolically more harmful
visceral fat13. The locus between GRB14 and COBLL1 shows a
similar association signature. In fact, this locus was first described
for its association with a lower WHRadjBMI

11 and reduced risk of
T2D30. Here, we show that the same allele is associated with
increased BF%, suggesting that the association with WHRadjBMI

likely reflects a proportionally greater fat accumulation at hip and
thighs rather than at the waist. Although this locus requires
further experimental follow-up, current observations point
towards GRB14 as the candidate gene in this locus. GRB14
encodes a protein that binds directly to the insulin receptor (IR),
and the BF% increasing allele of the index SNP is associated
with reduced GRB14 expression in adipose tissue. This is
consistent with previous observations showing that Grb14/
GRB14 expression is increased in adipose tissue of insulin-
resistant rodents and in obese patients with T2D56. Furthermore,
Grb14-deficient mice show improved glucose homeostasis
and enhanced insulin action through increased IR-mediated
IRS1 phosphorylation in the liver and skeletal muscle57. The
similar cross-phenotype association signatures of the IRS1 and
GRB14/COBLL1 loci might be a reflection of the close interaction
between IRS1 and GRB14 in the IR-signalling pathway.

The BF% increasing allele of the PLA2G6 locus is associated
with lower insulin and TG levels and reduced T2D risk,
particularly in men. PLA2G6 is the nearest gene and encodes a
calcium-independent phospholipase A2 involved in the hydro-
lysis of phospholipids. However, this locus harbours a number of
other genes that would make plausible candidates for driving the
cross-phenotype associations, including PICK1, which is mem-
brane sculpting BAR domain protein. PICK1-deficient mice and
flies display marked growth retardation, which at least in mice,
might be due to impaired storage and secretion of growth
hormone from the pituitary and possibly insulin from the
pancreas58. PICK1-deficient mice, despite their smaller size,
demonstrate increased body fat and reduced lean mass, reduced
TG levels and impaired insulin secretion, which was compensated
by increased insulin sensitivity58. Given the locus’ association
with nevus count, SOX10, which encodes a member of the SOX
(SRY-related HMG-box) family of transcription factors, is
another candidate gene in this locus. SOX genes are involved in
the regulation of embryonic development and SOX10 in
particular is important for the development of neural crest and
peripheral nervous system. Mutations in SOX10 have been
implicated in uveal melanoma and Waardenburg syndrome,
which presents with pigmentation abnormalities and hearing loss,
and Kallmann syndrome, which presents with failure to start or
complete puberty and hypogonadotropic hypogonadism (short
stature, absence of puberty and sex hormones, among others)
and absence of smell59,60. The phenotype similarity of these
syndromes and the association signature may suggest that

SOX10 could be driving the associations observed for the
PLA2G6 locus.

The TOMM40/APOE locus is another locus with an intriguing
association signature; while the BF% increasing allele has an
unfavourable effect on glycemic traits and T2D risk, it is
associated with a favourable lipid profile and reduced risk of
CVD. The high LD in this region poses a major challenge to
elucidate whether the association with lipid traits is due to a
‘spillover’ effect from nearby lipid-associated loci in APOE. Using
conditional analyses, we provide evidence suggesting that at least
the association with lower TG and high HDL-C levels might be
distinct from previously reported loci. Of interest is that the BF%
increasing allele seems to be associated with markers of increased
longevity41.

The CRTC1 locus is another gene-rich locus, but given the
epigenetic marks in this gene and data from animal models,
CRTC1 poses to be a good candidate gene. CRTC1 is primarily
expressed in the brain, and it may affect leptin anorexic effect
in the hypothalamus61. CRTC knockout mice demonstrated
hyperphagia, increased white adipose tissue and infertility61.

Our meta-analysis was limited by the fact that participating
studies all had imputed HapMap reference panels for autosomal
chromosomes and that the analysis model assumed additive
effects. Future discovery efforts based on genome-wide imputa-
tion of 1000 Genomes reference panels, that include X- and
Y-chromosomes and that also test recessive and dominant
inheritance, will allow for the discovery of more and lower-
frequency variants and for refining association signatures of
already established BF%-associated loci.

Taken together, our expanded genome-wide meta-analyses of
BF% has identified a number of loci with distinct cross-phenotype
association signature that, together with our functional follow-up
analyses, facilitated the identification of strong positional
candidates. Particularly striking is that two of the 12 loci harbour
genes (IRS1, GRB14) that influence insulin receptor signalling,
and two other loci contain genes (IGF2BP1, PICK1) that are
involved in the GH/IGF1 pathway, that in turn also relates to
insulin receptor signalling.

Methods
Discovery of new loci. Study design. A two-stage meta-analysis was performed
to identify loci associated with BF%. In Stage 1, we conducted two parallel
meta-analyses; one meta-analysis combined summary statistics from 43 GWAS,
totalling up to 76,137 adult individuals (65,831 European ancestry, 7,557 South
Asian ancestry, 2,333 East Asian ancestry and 416 African Americans), and the
other meta-analysis combined summary statistics from 13 additional studies
genotyped using the Metabochip, totalling up to 24,582 individuals (23,469
Europeans and 1,113 African Americans). In Stage 2, we combined the GWAS
meta-analysis results and Metabochip meta-analysis results from Stage 1
(Supplementary Table 1 and Supplementary Figs 1 and 2) in one final meta-
analysis, including 100,716 individuals from 56 studies. All the studies were
approved by their local institutional review boards and written consent was
obtained from all the study participants.

Although our primary analysis, described above, combined all the data
available to us, in the secondary analyses, we conducted stratified analyses for
(1) all-ancestry men-only, (2) all-ancestry women-only, (3) European ancestry,
(4) European ancestry men-only and (5) European ancestry women-only
(Supplementary Tables 4–6 and Supplementary Figs 2–5).

Phenotype. BF% in each cohort was measured either with bioimpedance analysis
(BIA) or dual energy X-ray absorptiometry (DEXA) as described in detail before13.
For each study, BF% was adjusted for age, age2 and study-specific covariates
(for example, genotype-based principle components, study centre and others),
if necessary. For studies of unrelated individuals, the residuals were calculated
separately in men and women, and in cases and controls. For studies of family-
based design, the residuals were calculated in men and women together, and sex
was additionally adjusted in the model. The residuals were then inverse normally
transformed for association testing. For studies of family-based design, the family
relatedness was additionally adjusted in the association testing.

Sample quality control, imputation and association. Each study did the study-
specific quality control (QC) (Supplementary Table 2). The GWAS common SNPs
were imputed in each study using the respective HapMap Phase II (Release 22)
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reference panels (EUR for studies of European-ancestry populations, CHBþ JPT
for studies of Eastern Asian ancestry populations, and CEUþYRIþCHBþ JPT
for studies of Indian Asian ancestry populations and African American
populations). Individual SNPs were associated with inverse normally transformed
BF% residuals using linear regression with an additive model. All the SNPs with
low imputation scores (MACH r2-hat o0.3, IMPUTE proper_info o0.4 or PLINK
info o0.8) and a MAC r3 were removed. The EasyQC software was used for
detailed QC of study level analyses and meta-level analysis, as described elsewhere62.

Meta-analysis. Meta-analyses were performed using inverse variance-weighted
fixed-effect method in METAL. Inflation before genomic control (GC)-correction
was generally low in all-ancestry (lmenþwomen¼ 1.13; lmen¼ 1.07; lwomen¼ 1.09)
and European-only (lmenþwomen¼ 1.13; lmen¼ 1.07; lwomen¼ 1.10) analyses.
To reduce the inflation of the test statistics from potential population structure,
individual GWAS results and GWAS meta-analysis results were corrected for
GC using all SNPs. Individual Metabochip results and Metabochip meta-analysis
results were GC-corrected using 4,425 SNPs, which are derived from pruning of
QT-interval replication SNPs within 500 kb of an anthropometry replication SNP
on the Metabochip. The GC-corrected GWAS and Metabochip meta-analysis
results were finally meta-analysed (Supplementary Fig. 1).

Using the LD score regression method in the European-only meta-analyses
suggests that the observed inflation is not due to population substructure63. The
regression intercept, which estimates inflation after removing polygenic signals,
was 1.0045 (with lGC¼ 1.136 and mean w2¼ 1.16) for sex-combined, 0.999
(lGC¼ 1.062 and mean w2¼ 1.079) for men-only and 1.014 (lGC¼ 1.105 and mean
w2¼ 1.112) for women-only analyses. Using these regression intercepts, rather than
the lGC, to correct our meta-analyses, results in more significant associations (for
example, for the rs1558902-FTO SNP, P¼ 3.24� 10� 27 in the modified European
sex-combined meta-analysis compared with P¼ 1.1� 10� 25 (Supplementary
Table 6)). Overall, however, the less stringent correction did not result in the
identification of novel loci.

Identification of novel loci. Each unique locus was defined as ±500 kb on either
side of the most significant SNP that reached a GWS threshold (Po5� 10� 8) in
the meta-analysis. These GWS-index SNP loci from the primary analysis as well
as from secondary analyses were highlighted for further analyses (Table 1
and Supplementary Tables 4–6). The genotype data for the genome-wide
significant SNPs was of high quality with a median imputation score of Z0.95
(Supplementary Table 26). The fifth percentile for all SNPs was Z0.80, except for
the previously established TOMM40 SNP (P5¼ 0.52).

Joint and conditional multiple SNP association analysis. We used the GCTA
approach to identify potential additional signals in regions of GWS-index SNP.
This approach uses summary meta-analysis statistics and a LD matrix from an
ancestry-matched sample to perform approximate joint and conditional SNP
association analysis. Although our primary analyses were based on all ancestry
populations, the 12 GWS-index SNPs were strongly associated with BF% in
European populations, 6 of them reaching the GWS (Supplementary Table 5).
The estimated LD matrix based on 6,654 unrelated individuals of European
ancestry in ARIC cohort was used in the analysis.

Heterogeneity among studies. The potential heterogeneity in the effect
estimates for our GWS-index SNPs were investigated between men and women
in all-ancestry populations and in European populations, and between individuals
of European ancestry and individuals of all ancestry. We also tested for
heterogeneity between results from studies that used BIA for BF% assessment
and that used DEXA. Heterogeneity was assessed using a t-statistic,
t¼ (b1�b2)/(se1

2þ se2
2� 2*r* se1*se2)½ to account for relatedness, where b1 and b2

are the effect size estimates, se1 and se2 are the corresponding standard errors and r
is Spearman’s correlation coefficient of beta values between men and women or
between European ancestry and all ancestry.

Variance explained. The variance explained by each GWS-index SNP was
calculated using the effect allele frequency (f) and beta (b) from the respective meta
analyses using the formula6 of Explained variance ¼ 2f(1� f)b2.

Cross-trait association lookups. Cardiometabolic consortia. To explore the
relationship between BF% and an array of cardiometabolic traits and diseases, the
association results for the 12 GWS-index SNPs were requested from seven primary
cardiometabolic genetic consortia: the LEPgen consortium (circulating leptin,
Kilpeläinen et al., in preparation), VATGen consortium27, GIANT (BMI, height
and WHRadjBMI)19,20,26, GLGC (HDL-C, LDL-C, TG, TC)28, MAGIC29,
DIAGRAM (T2D)30 and CARDIoGRAMplusC4D (CAD)31. On the basis of
known correlations among these cardiometabolic traits, we considered circulating
leptin levels, abdominal adipose tissue storage, height, WHRadjBMI, plasma lipid
levels, plasma glycemic traits, T2D and CAD as eight independent trait groups.
In addition, the associations for these 12 SNPs were also looked up in four
consortia that examined phenotypes more distantly related to BF%: ADIPOGen
(BMI-adjusted adiponectin)64, ReproGen (age at menarche)24, liver enzyme
meta-analysis65 and CRP meta-analysis38. For certain GWAS-index SNPs, we also
did specific lookups: rs6857 association in liver fat storage, rs3761445 associations
in cutaneous nevi and melanoma risk meta-analysis42–44, early growth genetics
(birth weight32 and pubertal height33), insulin-like growth factor 1 meta-analysis
(Teumer et al. under review) and CHARGE testosterone meta-analysis66, and
rs9906944 associations in tooth development meta-analysis35 and Early Growth
Genetics Consortium (birth weight32 and pubertal height33).

NHGRI GWAS catalogue lookups. We manually curated and searched the
National Human Genome Research Institute (NHGRI) GWAS Catalogue
(www.genome.gov/gwastudies) for previously reported associations for SNPs
within 500 kb and r240.7 (1000 Genomes Pilot1 EUR population based on
SNAP: http://www.broadinstitute.org/mpg/snap/ldsearch.php) with each of the 12
GWS-index SNPs. All previously reported associations that reached Po5� 10� 8

were retained (Supplementary Table 11).

Coding variants and CNVs. To determine whether any of our 12 GWS-index
SNPs might be tagging potentially functional variants, we identified all variants
within 500 kb and in LD (r240.7, HapMap release 22/1000 Genomes Pilot1 EUR)
with our GWS-index SNPs. As such, we identified 776 variants and annotated each
of them using Annovar (http://www.openbioinformatics.org/annovar/). The pre-
dicted functional impacts for coding variants were accessed via the Exome Variant
Server (http://evs.gs.washington.edu/EVS/) for PhastCon, Grantham, GERP and
PolyPhen, and were also from SIFT (http://sift.jcvi.org/). To determine whether any
of the 12 GWS-index SNPs tagged (r240.7) CNVs, all genetic variants (SNV, Indel
and SVS) within a 1 Mb window of the index SNPs from the 1000 Genomes Project
EUR population (Phase 1) were downloaded. The LD indexes were calculated
between each of the 12 GWS-index SNPs and any nearby CNV variants.

Analyses of eQTLs. The cis-associations between 12 GWS-index SNPs and
expression of nearby genes (±500 kb of the index-SNP) were examined in the
whole blood (n¼ 2,360) from the eQTL meta-analysis study67, the abdominal fat
tissue (n¼ 742 for omental fat and n¼ 610 for subcutaneous fat) from the bariatric
surgery study68, the abdominal subcutaneous fat tissue (n¼ 54) and gluteal
subcutaneous fat tissue (n¼ 65) from the MolOBB study69, and the brain tissue
from the cortical brain study (n¼ 193; ref. 70). Conditional analyses were
conducted by including both GWS-index SNP and the most significant cis-
associated SNP for the given transcript in the model to examine whether observed
associations were driven by our GWS-index SNP or by other nearby variants.
Conditional analyses were conducted for all tissues except the brain tissue.

Regulatory annotation using ENCODE and Roadmap. Regulatory element
overlap. We identified variants in LD (r240.7, 1000 Genomes Project Pilot, EUR)
with each of the 12 GWS-index SNPs and tested for overlap between these variants
and elements from regulatory datasets. In total, 746 variants at the 12 GWS-index
loci were examined for overlap with regulatory elements in 181 data sets
(Supplementary Tables 18 and 19) from five tissues (blood, brain, liver, adipose
tissue and pancreatic islets). These data sets, downloaded from the ENCODE
Consortium and Roadmap Epigenomics Projects, identify regions of open
chromatin (DNase-seq, FAIRE-seq), histone modification signal enrichment
(H3K4me1, H3K27ac, H3K4me3, H3K9ac and H3K4me2), and transcription factor
binding in cell lines and tissues believed to influence BF%. When available,
we downloaded data processed as a part of the ENCODE Integrative Analysis.
Roadmap Epigenomics sequencing data were processed with MACS2 and the same
irreproducible discovery rate pipeline used in the ENCODE Integrative analysis
when multiple data sets were available, or MACS2 alone when only a single
replicate was available.

Pol2 binding. We tested for correlation between Pol2 binding strength and
genotype in lymphoblastoid cell lines at two SNPs, rs4808844 and rs4808845 that
are in LD with GWS-index SNP of rs757318 in CRTC1. Pol2 binding data
uniformly processed as part of the ENCODE Integrative analysis were download
for 10 lymphoblastoid cell lines (GM10847, GM12878, GM12891, GM12892,
GM15510, GM18505, GM18526, GM18951, GM19099, GM19193). We examined
the alleles present at these variants in Pol2 ChIP-seq alignment BAM files to
determine sample genotypes and compared these with genotypes generated by the
1000 Genomes Project for the same samples. For the eight samples also genotyped
by the 1000 Genomes Project, genotype calls were 100% concordant. Correlation
between genotype and Pol2 binding signal at each SNP was calculated in R using a
linear model (signalBgenotype).

RegulomeDB annotation. We further characterized the variants at selected loci
using the web-based tool RegulomeDB (http://regulomedb.org/). The reference
sequence identifiers of variants that overlap two or more regulatory elements in the
same tissue were used to conduct the RegulomeDB search.

Pathway, network and tissue-enrichment analysis. To define pathways, net-
works and tissue enrichment, we extended the list of genome-wide significant loci
to also include loci that showed putative (Po1� 10� 5) association with BF%
(using the same criteria described above to define independent loci). As such loci,
represented by 43 index SNPs, were considered for gene prioritization, pathway
enrichment (DEPICT, Ingenuity Pathway Analyses), gene relationship analysis
(GRAIL) and protein–protein interaction analyses (DAPPLE).

Data-driven enrichment prioritized integration for complex traits. Details of this
method are provided in Pers et al.50 DEPICT is designed to systematically identify
the most likely causal gene at a given locus, to test gene sets for enrichment for
genetic associations, and to identify tissues and cell types in which genes from
associated loci are highly expressed.
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DEPICT assigned genes to the 43 associated loci if the genes resided within
the associated LD region (r240.5) of a given associated SNP. After merging
overlapping regions and discarding regions that mapped within the extended major
histocompatibility complex locus, we were left with 42 non-overlapping regions
that covered a total of 82 genes. We then used DEPICT to test enrichment at these
loci for a total of 14,461 reconstituted gene sets, and for 209 tissue and cell type
annotations.

Ingenuity pathway analyses. We used HaploReg v2 (http://www.broadinstitute.
org/mammals/haploreg/haploreg.php) and adopted a stringent LD (r240.8 in 1000
Genome phase 1 EUR) to extract all the nearby genes (88 genes in total) of the
index SNPs based on both GENCODE and RefSeq. For 65 out of them, they were
successfully mapped to the Ingenuity Knowledge Base, and those unmapped genes
are mainly lincRNA, miRNA, antisense or processed transcript genes derived from
GENCODE. The 65 genes were incorporated into Ingenuity Canonical pathway
enrichment analysis. The P values are calculated based on Fisher’s right-tailed exact
test. The default settings were used for Ingenuity Interaction network analysis.

Gene relationships among implicated loci. The GRAIL was used to examine
relationships between genes. For each query and seed SNP, we adopted the default
methods implemented in GRAIL to extract the genes around each index SNP:
that is, (1) we first identified neighboring SNPs in the 30 and 50 direction in LD
(r240.5, CEU HapMap), proceeding outwards in each direction to the nearest
recombination hotspots to define an interval region, and extracted all the genes in
this interval; (2) if there are no genes in that interval region, the interval is extended
an additional 250 kb in either direction. The 12 GWS-index SNP regions were
input as seed regions, and the regions for the remaining 31 SNPs were input as
query regions. Connections between genes were inferred from textual relationships
based on published scientific text using PubMed abstracts as of December 2006.
The significant gene similarity was declared based on PGRAILo0.01.

Disease association protein–protein link evaluator. The DAPPLE package was
used to examine the potential encoded protein–protein interaction evidence for the
genes located in the 43 associated loci. Genes from 32 of the 43 loci were annotated
in the high-confidence pair-wise interaction InWeb database. Both the direct
and indirect interactions were considered. The running settings were 1,000
permutation, common interactor binding degree ¼ 2, and 110 kb upstream and
40 kb downstream to define a gene’ residence.

Drosophila knockdown experiments. Genome-wide screen. We first identified all
genes within ±500 kb of the 12 GWS-index SNPs, and subsequently identified the
corresponding Drosophila orthologues available in the ensembl orthologue data-
base (www.ensembl.org, Supplementary Table 23). Drosophila triglyceride content
values were mined from a publicly available genome-wide obesity screen data set52.
Estimated values represent fractional changes in triglyceride content in adult male
flies. Data are from male progeny resulting from crosses of male UAS-RNAi flies
from the VDRC and Hsp70-GAL4; Tub-GAL8ts virgins females. Two-to-five-day-
old males were sorted into groups of 20 and subjected to two 1-h wet heatshocks 4
days apart. On the seventh day, flies were picked in groups of eight, manually
crushed and sonicated, and the lysates heat-inactivated for 10 min in a
thermocycler at 95 �C. Centrifuge-cleared supernatants were then used for
triglyceride (GPO Trinder, Sigma) and protein (Pierce) determination. Triglyceride
values from these adult-induced ubiquitous RNAi knockdown individuals were
normalized to those obtained in parallel from non-heatshocked progeny from the
very same crosses.

Targeted follow-up. Based on known biology, one to three potential candidate
genes within ±500 kb of the 12 GWS-index SNPs were selected. Corresponding
Drosophila orthologues were available for 11 loci, but no orthologue exists for FTO
(Supplementary Table 24, http://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl). The
respective fly RNAi stocks for each Drosophila orthologue were acquired from the
Vienna Drosophila Resource Center, as well as genetic background controls w1118
(for GD lines, VDRC #60000); tub-gal4/TM6 and w; tub-gal80ts/TM6 is available
from the Bloomington Drosophila Stock Center. For fly triglyceride assay in the
adult, male RNAi flies were crossed with w; tub-gal4 tub-gal80ts/TM6 virgins.
Progenies were kept in 16 �C until enclosure. Adults were transferred to 25 �C for
2 weeks. Whole-animal triglycerides were measured as previously described53.
Briefly, triglycerides were measured using the Infinity Triglycerides Reagent kit
(Thermo Fisher #TR22321) on whole-animal homogenates of groups of three
animals. Proteins from the same homogenates were measured using the Pierce
BCA protein Assay kit (Thermo Scientific #23227). Triglycerides were normalized
by proteins. Data were average of three experiments. The fractional changes in
triglyceride content in adult male flies between knockdown group and the control
groups were compared using the two-tailed t-tests in SAS version 9.2 software (SAS
Institute, Cary, NC).
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Foundation; Sigrid Jusélius Foundation; Social Insurance Institution of Finland (KELA);
State of Bavaria; Stroke Association, UK; Swedish Diabetes Foundation; Swedish
Foundation for Strategic Research; Swedish Heart-Lung Foundation; Swedish Research
Council; Swedish Research Council for Infrastructures; Swiss National Science
Foundation; Sylvia & Charles Viertel Charitable Foundation; Tampere Tuberculosis
Foundation; Timber Merchant Vilhelm Bangs Foundation; Topcon; Torsten and Ragnar
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Twin Research, King’s College London, London SE1 1E7, UK. 192 Division of Endocrinology, Lady Davis Institute, Jewish General Hospital, McGill University,
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