49 research outputs found

    Cyanobacteria and cyanotoxins in Polish freshwater bodies.

    Get PDF
    In this work, the authors examined the presence of cyanobacteria and cyanotoxins in 21 samples collected from fresh water bodies located in 5 provinces in Poland: Lublin (2), Podlasie (1), Pomerania (6), Warmia-Masuria (1) and Wielkopolska (11). In addition, to determine the general pattern of geographical distribution, frequency of cyanobacteria occurrence, and cyanotoxins production, the published data from 238 fresh water bodies in Poland were reviewed. On the basis of these collected results, we concluded that Planktothrix, Aphanizomenon, Microcystis and Dolichospermum were dominant. The general pattern in geographical distribution of the identified cyanobacterial genera was typical of other eutrophic waters in Europe. The production of cyanotoxins was revealed in 18 (86%) of the 21 samples analyzed in the present work and in 74 (75%) of the 98 total water bodies for which the presence of toxins had been examined. Among the 24 detected microcystin variants, [Asp3]MC-RR was most common. These results can be verified when more data from the less explored water bodies in the southern and eastern parts of Poland are available.The authors would like to acknowledge the European Cooperation in Science and Technology, COST Action ES 1105 "CYANOCOST- Cyanobacterial blooms and toxins in water resources: Occurrence, impacts and management" for adding value to this study through networking and knowledge sharing with European experts and researchers in the field.42435837

    On Imprimitive Representations of Finite Reductive Groups in Non-defining Characteristic

    Full text link
    In this paper, we begin with the classification of Harish-Chandra imprimitive representations in non-defining characteristic. We recall the connection of this problem to certain generalizations of Iwahori-Hecke algebras and show that Harish-Chandra induction is compatible with the Morita equivalence by Bonnaf\'{e} and Rouquier, thus reducing the classification problem to quasi-isolated blocks. Afterwards, we consider imprimitivity of unipotent representations of certain classical groups. In the case of general linear and unitary groups, our reduction methods then lead to results for arbitrary Lusztig series

    Data Descriptor : A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.Peer reviewe

    A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Get PDF
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.Peer reviewe

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature

    Do toxic cyanobacteria blooms pose a threat to the Baltic ecosystem?

    No full text
    Cyanobacteria, otherwise known as blue-green algae, are oxygenic, photosynthetic prokaryotes. They occur naturally in many fresh, marine and brackish waters worldwide and play an important role in global carbon and nitrogen cycles. In their long history, cyanobacteria have developed structures and mechanisms that enable them to survive and proliferate under different environmental conditions. In the Baltic Sea, the mass development of cyanobacteria is compounded by a high level of eutrophication. The dominant species in the Baltic, the filamentous Aphanizomenon flos-aquae and Nodularia spumigena, can fix dissolved atmospheric N2, as a result of which they can outcompete other phytoplankton organisms. Heterocystous, filamentous cyanobacteria also make a significant contribution to the internal nutrient loading in the Baltic. The blooms of N. spumigena are of particular concern, as this cyanobacterium produces nodularin (NOD), a hepatotoxic peptide. The concentration of the toxin in the sea is regulated mainly by dilution with uncontaminated water, photolysis, sorption to sediments and microbial degradation. The transfer of the toxin in the Baltic trophic chain through zooplankton, mussels, fish and birds has been reported, but biodilution rather than bioconcentration has been observed. Cyanobacterial blooms are thought to pose a serious threat to the ecosystem. Their harmful effects are related to the occurrence of a high biomass, oxygen depletion, a reduction in biodiversity, and the production of toxic metabolites
    corecore