49 research outputs found

    Diffuse large B-cell lymphomas in adults with aberrant coexpression of CD10, BCL6, and MUM1 are enriched in IRF4 rearrangements

    Full text link
    Diffuse large B-cell lymphoma (DLBCL) with aberrant co-expression of CD10+BCL6+MUM1+ (DLBCL-AE), classified as germinal center B cell (GCB)-type by the Hans algorithm (HA), were genetically characterized. To capture the complexity of these DLBCL-AE, we used an integrated approach including gene expression profiling (GEP), fluorescence in-situ hybridization (FISH), targeted gene sequencing, and copy number (CN) arrays. According to GEP, 32/54 (59%) cases were classified as GCB-DLBCL, 16/54 (30%) as activated B-cell (ABC)-DLBCL and 6/54 (11%) as unclassifiable. The discrepancy between HA and GEP was 41%. Three genetic subgroups were identified. Group 1 included 13/50 (26%) cases without translocations and mainly showing and ABC/MCD molecular profile. Group 2 comprised 11/50 (22%) cases with IRF4 alterations (DLBCL-IRF4), frequent mutations in IRF4 (82%) and NF-?B pathway genes (MYD88, CARD11, and CD79B), and losses of 17p13.2. Five cases each were classified as GCB- or ABC-type. Group 3 included 26/50 (52%) cases with one or several translocations in BCL2/BCL6/MYC/IGH and GCB/EZB molecular profile predominated. Two cases in this latter group showed complex BCL2/BCL6/IRF4 translocations. DLBCL-IRF4 in adults showed a similar CN profile and share recurrent CARD11 and CD79B mutations when compared to LBCL-IRF4 in pediatric population. However, adult cases showed higher genetic complexity, higher mutational load with frequent MYD88 and KMT2D mutations, and more often ABC-GEP. IRF4 mutations were identified only in IRF4-rearranged cases indicating its potential utility in the diagnostic setting. In conclusion, DLBCL-AE are genetically heterogeneous and enriched in cases with IRF4 alterations. DLBCL-IRF4 in adults has many similarities to the pediatric counterpart.Copyright © 2021 American Society of Hematology

    Current and emerging developments in subseasonal to decadal prediction

    Get PDF
    Weather and climate variations of subseasonal to decadal timescales can have enormous social, economic and environmental impacts, making skillful predictions on these timescales a valuable tool for decision makers. As such, there is a growing interest in the scientific, operational and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) timescales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) timescales, while the focus remains broadly similar (e.g., on precipitation, surface and upper ocean temperatures and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal and externally-forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correct, calibration and forecast quality assessment; model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Prograame (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Subseasonal to Decadal Prediction: Filling the Weather-Climate Gap

    No full text

    Real-time data processing in the ALICE High Level Trigger at the LHC

    No full text
    International audienceAt the Large Hadron Collider at CERN in Geneva, Switzerland, atomic nuclei are collided at ultra-relativistic energies. Many final-state particles are produced in each collision and their properties are measured by the ALICE detector. The detector signals induced by the produced particles are digitized leading to data rates that are in excess of 48 GB/s. The ALICE High Level Trigger (HLT) system pioneered the use of FPGA- and GPU-based algorithms to reconstruct charged-particle trajectories and reduce the data size in real time. The results of the reconstruction of the collision events, available online, are used for high level data quality and detector-performance monitoring and real-time time-dependent detector calibration. The online data compression techniques developed and used in the ALICE HLT have more than quadrupled the amount of data that can be stored for offline event processing

    Λ3H^3_\Lambda\mathrm{H} and Λˉ3H^3_{\bar{\Lambda}}\mathrm{\overline{H}} lifetime measurement in Pb-Pb collisions at sNN=\sqrt{s_{\mathrm{NN}}} = 5.02 TeV via two-body decay

    No full text
    International audienceAn improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb–Pb collisions at sNN=5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the d N /d( ct ) spectrum. The measured value, τ=242−38+34 (stat.) ± 17 (syst.) ps, is compatible with representative theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle

    Energy dependence of exclusive J/ψ\mathrm {J}/\psi photoproduction off protons in ultra-peripheral p–Pb collisions at sNN=5.02\sqrt{s_{\mathrm {\scriptscriptstyle NN}}} = 5.02 TeV

    No full text
    International audienceThe ALICE Collaboration has measured the energy dependence of exclusive photoproduction of J/ψ\mathrm {J}/\psi vector mesons off proton targets in ultra–peripheral p–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV. The e+^+ e^- and μ+μ\mu ^+\mu ^- decay channels are used to measure the cross section as a function of the rapidity of the J/ψ\mathrm {J}/\psi in the range 2.5<y<2.7-2.5< y < 2.7 , corresponding to an energy in the γ\gamma p centre-of-mass in the interval 40<Wγp<55040< W_{\gamma \mathrm {p}}<550 GeV. The measurements, which are consistent with a power law dependence of the exclusive J/ψ\mathrm {J}/\psi photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements

    Exploration of jet substructure using iterative declustering in pp and Pb–Pb collisions at LHC energies

    No full text
    The ALICE collaboration at the CERN LHC reports novel measurements of jet substructure in pp collisions at s\sqrt{s}= 7 TeV and central Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. Jet substructure of track-based jets is explored via iterative declustering and grooming techniques. We present the measurement of the momentum sharing of two-prong substructure exposed via grooming, the zgz_{\rm{g}}, and its dependence on the opening angle, in both pp and Pb-Pb collisions. We also present the first measurement of the distribution of the number of branches obtained in the iterative declustering of the jet, which is interpreted as the number of its hard splittings. In Pb-Pb collisions, we observe a suppression of symmetric splittings at large opening angles and an enhancement of splittings at small opening angles relative to pp collisions, with no significant modification of the number of splittings. The results are compared to predictions from various Monte Carlo event generators to test the role of important concepts in the evolution of the jet in the medium such as color coherence
    corecore