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 230 

Abstract  231 

Weather and climate variations on subseasonal to decadal timescales can have enormous 232 

social, economic and environmental impacts, making skillful predictions on these timescales a 233 

valuable tool for decision makers. As such, there is a growing interest in the scientific, 234 

operational, and applications communities in developing forecasts to improve our 235 

foreknowledge of extreme events. On subseasonal to seasonal (S2S) timescales, these include 236 

high-impact meteorological events such as tropical cyclones, extratropical storms, floods, 237 

droughts, and heat and cold waves. On seasonal to decadal (S2D) timescales, while the focus 238 

broadly remains similar, (e.g., on precipitation, surface and upper ocean temperatures and their 239 

effects on the probabilities of high-impact meteorological events), understanding the roles of 240 

internal and externally-forced variability such as anthropogenic warming in forecasts also 241 

becomes important.  242 

 243 

The S2S and S2D communities share common scientific and technical challenges. These include 244 

forecast initialization and ensemble generation; initialization shock and drift; understanding the 245 

onset of model systematic errors; bias correction, calibration, and forecast quality assessment; 246 

model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and 247 
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linking research, operational forecasting, and end user needs. In September 2018 a coordinated 248 

pair of international conferences, framed by the above challenges, was organized jointly by the 249 

World Climate Research Programme (WCRP) and the World Weather Research Programme 250 

(WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, 251 

and future needs, providing an ideal basis for synthesizing current and emerging developments 252 

in these areas that promise to enhance future operational services. This article provides such a 253 

synthesis. 254 

 255 

Capsule 256 

Climate prediction on subseasonal to decadal time scales is a rapidly advancing field that is 257 

synthesizing improvements in climate process understanding and modeling to improve and 258 

expand operational services worldwide. 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 
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[Introductory text] 270 

Beyond the tremendous progress in weather forecasting witnessed in recent decades (Bauer et 271 

al. 2015), predictive capabilities have expanded, increasingly seamlessly, to encompass climate 272 

on subseasonal to decadal time scales (Fig. 1 and Kirtman et al. 2013). These advances have 273 

been enabled by better observations, data assimilation schemes, and models originating both 274 

from the weather prediction and long term climate simulation communities, together with 275 

increased computational power supporting progressively higher resolution and larger 276 

ensembles that allow uncertainties to be better estimated and in some cases reduced. 277 

 278 

International efforts under the auspices of the World Weather Research Programme (WWRP) 279 

and World Climate Research Programme (WCRP) have helped drive this progress through 280 

coordinated research to improve the accuracy and utilization of weather and climate 281 

predictions. Community research efforts under the WCRP led initially to climate predictions one 282 

to two seasons ahead becoming part of the World Meteorological Organization (WMO) 283 

operational infrastructure (Graham et al. 2011). More recently a joint WWRP and WCRP 284 

Subseasonal to Seasonal Prediction Project has started tackling the so-called weather-climate 285 

prediction desert from two weeks to a season (Robertson et al. 2018; Mariotti et al. 2018), 286 

aiming to underpin new WMO operations on those time scales (Vitart et al. 2017), and the 287 

NOAA-led SubX project has similar aims (Pegion et al. 2019). At longer ranges, WCRP-enabled 288 

research has quantified predictability from a year to a decade, and corresponding WMO 289 

operational infrastructure for annual-to-decadal climate prediction is now in place (World 290 

Meteorological Organization 2018; Kushnir et al. 2019). 291 
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 292 

As each of these efforts has progressed it has become increasingly apparent that common 293 

challenges exist across predictive time scales. These include understanding and adequately 294 

representing in models processes that give rise to predictability in the Earth system, consisting 295 

of the physical climate system—atmosphere, ocean, land and sea ice—together with associated 296 

biogeochemical cycling, especially of carbon (upper part of Fig. 1); capturing and 297 

communicating inherent uncertainties caused by the chaotic nature of weather and climate; 298 

correcting for and reducing imperfections in models that may systematically degrade forecast 299 

quality; and providing forecast information in a form that is applicable to decision making. At 300 

the same time, opportunities for usefully predicting elements of the Earth system beyond long-301 

term means of standard meteorological variables , including land, ocean and sea ice properties 302 

and risks of weather extremes, have come into focus. The ultimate collective endeavor is to 303 

improve the prediction of the spatial–temporal continuum connecting weather to climate 304 

through a coordinated, seamless and integrated Earth system approach for the benefit of 305 

society. 306 

 307 

In September 2018, international conferences1 on subseasonal to seasonal prediction (S2S, 308 

encompassing forecast ranges from two weeks to a season) and seasonal to decadal prediction (S2D, 309 

encompassing ranges longer than a season, up to a decade) together with cross-cutting plenary 310 

                                                           

1  The Second International Conference on Subseasonal to Seasonal Prediction (S2S) and Second 
International Conference on Seasonal to Decadal Prediction (S2D) were held 17-21 September 2018 at NCAR 
facilities in Boulder Colorado. These coordinated meetings involved 347 participants, including 92 early career 
scientists, from 38 countries, with a total of 368 oral and poster presentations. Further information including a 
complete list of contributions can be found at https://www.wcrp-climate.org/s2s-s2d-2018-home. 

https://www.wcrp-climate.org/s2s-s2d-2018-home
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sessions were convened jointly by WWRP and WCRP. This represented a confluence of research 311 

and operational climate prediction expertise and knowledge exchange across prediction time 312 

scales that was unprecedented in scope. Selected outcomes, organized by themes 313 

encompassing the challenges outlined above, are synthesized in this article. 314 

 315 

Mechanisms of predictability. 316 

Subseasonal to Seasonal  317 

A major source of S2S predictability is the organization of tropical convection by the Madden 318 

Julian Oscillation, or MJO (Woolnough, 2019), which is predicted skillfully by S2S project models 319 

up to 3-4 weeks ahead (Vitart 2017). The MJO has worldwide impacts that depend on its 320 

amplitude and phase, including modulation of tropical cyclone activity (Lee et al. 2018; Zhao et 321 

al. 2019) and extratropical phenomena such as the East Asian summer monsoon (Li et al. 2018). 322 

The associated tropical-extratropical teleconnections (Lin et al. 2019) impart S2S forecast skill 323 

for many of these extratropical phenomena including Euro-Atlantic weather regimes, position 324 

of the jet stream, atmospheric rivers (DeFlorio et al. 2019), and hail/tornado activity (Baggett et 325 

al. 2018). However, good representations of the basic state both in the tropics and extratropics, 326 

as well as tropical air-sea interactions and atmospheric convection (e.g., Yoo et al. 2015), are 327 

necessary for these teleconnections to be correctly simulated by general circulation models 328 

(Henderson et al. 2017).  329 

 330 



11 
 

S2S predictability also derives from the stratosphere through its relatively long time scales of 331 

variability2 and lagged influences on the troposphere (Kidston et al. 2015). Interactions 332 

between the stratosphere and the troposphere from the tropics to the extratropics thus 333 

provide a promising source of S2S prediction skill (Butler et al. 2019). For example, in the winter 334 

Northern Hemisphere stratosphere the climatological westerly polar vortex exhibits extremes 335 

in variability, including sudden stratospheric warmings (SSWs) that are driven largely by Rossby 336 

waves from the troposphere. SSWs have lagged impacts on sea level pressure, surface 337 

temperature and precipitation, including pronounced tendencies for cold anomalies over 338 

northern Eurasia and warm anomalies over northeastern North America (e.g., Sigmond et al. 339 

2013). Initializing forecasts during extreme stratospheric events provides increases in prediction 340 

skill of surface climate in such regions up to 3-6 weeks later (Domeisen et al. 2019c). However, 341 

the predictability of specific extreme stratospheric events is limited, ranging from a few days to 342 

about two weeks (Fig. 2) for different SSWs (Karpechko 2018; Taguchi 2018, Domeisen et al. 343 

2019a), although models show evidence of under-confident forecasts in the stratosphere on 344 

S2S timescales (O’Reilly et al. 2019). Outstanding questions remain about the mechanisms of 345 

stratosphere-troposphere coupling processes, in particular on the causes, variability, and trends 346 

for the occurrence of SSW events (Ayarzaguena et al. 2018; Simpson et al. 2018) and why not 347 

all SSW events have similar downward effects (e.g., Garfinkel et al. 2013, Maycock & Hitchcock, 348 

2015). In addition, further research is needed to assess the degree to which prediction models 349 

capture both the stratospheric variability and coupling processes. 350 

                                                           

2 Including the quasi-biennial oscillation (QBO) of the tropical stratosphere, whose influences span a range of time 
scales and are addressed in the “Time scale interactions” subsection. 
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 351 

Among atmosphere-surface influences, land-atmosphere interactions have their greatest 352 

impact on subseasonal time scales in forecasts where land is initialized (Dirmeyer et al. 2018a), 353 

but also can contribute skill on weather prediction and multi-month time scales (Dirmeyer and 354 

Halder 2016, 2017). The most broadly impactful land attribute is soil moisture (Koster et al. 355 

2004, 2016), but anomalies in soil temperature (Y. Zhang et al. 2019; Yang et al. 2019), snow 356 

cover (Jeong et al. 2012; Orsolini et al. 2013), and vegetation states (Williams et al. 2016) can all 357 

have significant impacts. A number of recent studies have focused on non-local impacts of land 358 

surface anomalies, showing for example that soil moisture anomalies can exert remote as well 359 

as local influences in boreal summer through driving of quasi-stationary Rossby waves and 360 

associated circulation anomalies (e.g., Teng et al. 2019; Wang et al. 2019). In addition, land 361 

surface and subsurface temperatures in spring may exert delayed downstream influences on 362 

precipitation (Xue et al. 2018), and evapotranspiration may remotely influence precipitation 363 

over land (Wei and Dirmeyer 2019). 364 

 365 

Atmosphere-ocean interactions, fundamental for S2D predictability, can also be influential on 366 

S2S time scales. For example submonthly prediction skills for precipitation and temperature are 367 

enhanced over certain land areas including parts of Australia, the Maritime Continent and the 368 

contiguous United States when tropical sea surface temperature (SST) anomalies associated 369 

with El Niño Southern Oscillation (ENSO) are present (Hudson et al. 2011; Li and Robertson 370 

2015; DelSole et al. 2017). Extratropical SST anomalies also can impart S2S skill through 371 

teleconnections, as shown for example by McKinnon et al. (2016) who identified a SST anomaly 372 
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pattern in the mid-latitude North Pacific that tends to precede heat waves and rainfall deficits 373 

in the eastern United States by up to 50 days. 374 

 375 

Sea ice strongly influences surface fluxes and lower atmospheric temperatures particularly in the 376 

marginal ice zone, and provides a source of S2S predictability for polar and possibly midlatitude 377 

regions (Chevallier et al. 2019). This motivates the development of S2S forecasts for sea ice, 378 

which thus far have shown significant, albeit region-dependent skill for predicting intraseasonal 379 

Arctic sea ice variability (Liu et al. 2018, Zampieri et al. 2018). 380 

 381 

Seasonal to decadal  382 

A primary general source of S2D atmospheric predictability is remote influences from a variety 383 

of teleconnections (e.g., Yuan et al. 2018; Ruprich-Robert et al. 2018; Beverley et al. 2019. 384 

Teleconnections associated with anomalous atmospheric circulation patterns arise from 385 

changes to the Walker circulation usually driven by anomalous zonal SST gradients (Cai et al. 386 

2019), and changes to the Hadley circulation usually driven by anomalous meridional SST 387 

gradients, especially interhemispheric differences (Kang et al. 2018). These influences impact 388 

tropical cyclones and rainfall, whereas anomalous upper level divergence due to tropical rainfall 389 

anomalies leads to Rossby waves that impact the extratropics (Scaife et al. 2017; O’Reilly et al. 390 

2018). Besides giving rise to atmosphere-ocean interactions that alter the atmospheric 391 

circulation, SST anomalies can induce low-level temperature and moisture anomalies that are 392 

advected elsewhere by climatological winds (Dunstone et al. 2018).  393 

 394 



14 
 

S2D atmospheric predictability arising from teleconnections requires that SST anomalies be 395 

predictable. On seasonal timescales, tropical SST anomalies are dominated by ENSO (Yang et al. 396 

2018), though there is some independent variability in the tropical Atlantic and Indian Oceans 397 

that also drives teleconnections (e.g., Nnamchi et al. 2015; Lim et al. 2016). The impacts of 398 

ENSO are sensitive to ENSO diversity (Capotondi et al. 2015), including the longitude at which 399 

maximum SST anomalies occur (Yeh et al. 2018; Patricola et al. 2018). ENSO SST anomalies are 400 

largely predictable out to a year particularly in winter and early spring (Barnston et al. 2017), 401 

whereas predictability may extend to two years for some La Niña events (Di Nezio et al. 2017), 402 

and to 1 ½ to two years for certain El Niño events (Luo et al. 2008). 403 

  404 

Decadal SST variability occurs in both the Atlantic and Pacific oceans, often referred to as 405 

Atlantic Multidecadal Variability (AMV) and Pacific Decadal Variability (PDV), e.g. Kushnir et al. 406 

(2019). The causes of AMV are not fully understood, especially the relative roles of internal 407 

variability and external forcing from aerosols. However, AMV is modulated to some extent by 408 

the oceanic Atlantic Meridional Overturning Circulation  (Yeager and Robson 2017), which 409 

together with the North Atlantic subpolar gyre is influenced by deep ocean density anomalies 410 

particularly in the Labrador Sea (Robson et al. 2016); these influences contribute to the 411 

especially high multi-year predictability in the North Atlantic (Buckley et al. 2019). AMV couples 412 

to the Hadley circulation, affecting hurricanes and Sahel rainfall as illustrated in Fig. 3 (Sheen et 413 

al. 2017), and can initiate atmospheric Rossby waves with remote influences including 414 

temperatures in parts of China (Monerie et al. 2018). AMV can influence PDV (Ruprich-Robert 415 

et al. 2017), and vice-versa. PDV may also be influenced by off-equatorial heat content 416 
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anomalies in the western Pacific Ocean (Meehl et al. 2016). Decadal variability of deep 417 

convection in the Southern Ocean influences temperatures in that region, potentially explaining 418 

recent increases in Antarctic sea ice (L. Zhang et al. 2019). 419 

 420 

S2D atmospheric predictability also arises from longer time scale processes over land, mainly 421 

involving soil moisture (Chikamoto et al. 2017; Ardilouze et al. 2019) and vegetation (Weiss et 422 

al. 2014; Bellucci et al. 2015). These highlight the need for land surface initialization 423 

(Prodhomme et al. 2016a) and realistic vegetation models (Alessandri et al. 2017). 424 

 425 

An additional source of S2D predictability is variations in radiative forcing, which provide 426 

significant skill on multi-year timescales (Smith et al. 2019). Much of this skill arises from 427 

changes in greenhouse gases, but anthropogenic aerosols may force decadal variations in AMV 428 

(Booth et al. 2012) and PDV (Smith et al. 2016; Takahashi and Watanabe 2016). Solar variability 429 

(Misios et al. 2019), and volcanic eruptions (Menegoz et al. 2018) including through their 430 

influence on ENSO (Khodri et al. 2017; Wang et al. 2018) and possibly AMV and the North 431 

Atlantic Oscillation (NAO; Swingedouw et al. 2017) affect climate on seasonal to decadal 432 

timescales and are potentially important sources of predictability. However, the relative roles 433 

of external radiative forcing and internal variability (W. Kim et al. 2018) continue to be 434 

explored. 435 

 436 

Time scale interactions 437 
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The Quasi-biennial Oscillation (QBO) is a downward-propagating ~28-month oscillation of 438 

easterly and westerly zonal jets in the tropical stratosphere, driven by upward equatorial waves 439 

from the troposphere (e.g., Kim and Chun 2015). In addition to having high predictability and 440 

some teleconnected influence on winter surface climate (e.g., Scaife et al. 2014a), the QBO 441 

modulates the amplitude, persistence, and rate of propagation of the boreal wintertime MJO 442 

(Fig. 4) through its impact on tropical convection via changes in static stability near the 443 

tropopause (Yoo and Son 2016, Nishimoto and Yoden 2017). MJO amplitude is better predicted 444 

at longer leads during the easterly phase of the QBO (Marshall et al. 2017), likely as a result of 445 

longer persistence of the MJO rather than its greater initial amplitude (Lim et al. 2019). 446 

 447 

The modulation of SSW probability of occurrence by tropical sources of variability, such as the 448 

QBO, ENSO, or MJO, may extend probabilistic predictability of stratospheric variability to a few 449 

months or longer if these relationships can be adequately captured by prediction models 450 

(Garfinkel & Schwartz 2017; Garfinkel et al. 2018; Domeisen et al. 2019a,b). 451 

 452 

There is increasing evidence of additional interactions between various sources of S2S and S2D 453 

predictability across time scales. One example is that seasonal time scale variations in ENSO 454 

modulate the MJO (Chen et al. 2016) and its impact on the NAO (Lee et al. 2019) with 455 

consequent influences on weather over remote regions. Another is that ENSO teleconnection 456 

to the extratropics has varied over multi-decadal time scales spanning the past 100+ years 457 

(O’Reilly 2018), possibly modulating ability to predict the NAO (Weishiemer et al. 2019), 458 
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although sampling variability can also give rise to such long-term changes in teleconnections 459 

(Yun and Timmermann 2018). 460 

 461 

Modelling issues. 462 

Subseasonal to Seasonal 463 

Because S2S operational prediction is a relatively new enterprise, considerable efforts focusing 464 

on fundamental aspects of forecast system design are occurring at operational centers 465 

worldwide (Takaya, 2019). One major emphasis consists of methods to represent the 466 

uncertainty in initial conditions (bred vector, singular vector, ensemble data assimilation) and 467 

model physics (stochastic physics, Leutbecher et al. 2018). In addition, configurations of real-468 

time forecasts and hindcasts, including ensemble size, ensemble strategy (lagged ensemble 469 

with different initial times or burst ensemble with a common initial time) and hindcast period, 470 

impact forecast quality and ability to evaluate the performance of the hindcast. Identifying 471 

suitable compromises and trade-offs in forecast system design is a challenge under practical 472 

constraints for operational activities (costs, priorities, timeliness) and demands further 473 

research. 474 

 475 

From the modelling perspective, multiple operational centers are moving towards a unified, or 476 

“seamless” coupled forecast system that can be applied across timescales from days to seasons 477 

or longer. More S2S models are incorporating ocean and sea-ice components, and becoming 478 

increasingly complex and complete in representing coupled processes in the Earth system. On 479 

the other hand, poor representation of model physics, in particular clouds (Morcrette et al. 480 
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2018), results in model drifts and biases in surface land and ocean temperatures, which is a 481 

long-standing modeling issue that can degrade the skill of S2S predictions (Vitart and 482 

Balmaseda, 2017). Improvements in cloud parameterizations (Stan and Straus, 2019) and in 483 

representing the diurnal cycle of the atmospheric boundary layers are crucial for advancing S2S 484 

modeling. The Earth system modeling approach poses another challenge to initialize the ocean 485 

and sea ice components with high accuracy; for example there is a relatively large dispersion of 486 

initialized sea ice fields in current S2S models (Chevallier et al. 2017, Zampieri et al. 2018).  487 

Another important S2S modeling issue is predicting the MJO, owing to its importance as a 488 

source of subseasonal predictability (H. Kim et al. 2018). Multi-model evaluations have shown 489 

that S2S models have difficulties in representing MJO propagation across the Maritime 490 

Continent. Process-oriented diagnostics (Maloney et al. 2019) have identified a dry bias in the 491 

lower troposphere as one of the causes for the poor MJO propagation through weakening the 492 

horizontal moisture gradient over the Indian Ocean and western Pacific (Lim et al. 2018) and 493 

dampening the organization and propagation of the MJO. A recharge process whereby moisture 494 

builds up in the lower troposphere during the suppressed convection phase of the MJO,  and 495 

that is key for MJO propagation around the Maritime Continent in boreal winter, is 496 

underrepresented in S2S models due to the dry bias (Kim 2017). Ocean coupling is another 497 

important process for the MJO (DeMott et al. 2015), and several studies have demonstrated 498 

that ocean coupling can improve MJO propagation and enhance predictive skill in models. 499 

 500 

Poor vertical resolution, low model lid height, inadequate orographic and non-orographic 501 

gravity wave parameterizations, and biases in the tropospheric mean state (e.g., the location of 502 
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stationary Rossby waves) could limit the predictive skill from stratosphere-troposphere 503 

coupling processes (Tripathi et al. 2015; Butler et al. 2016), but new generations of prediction 504 

systems have rapidly improved in many of these areas.  Future model development could 505 

prioritize improved representation of orographic and non-orographic gravity wave drag and an 506 

internally-generated QBO (Butchart et al. 2018). Better understanding of stratosphere-507 

troposphere coupling processes and the role of the stratosphere on surface skill could be 508 

gained through case studies and stratospheric nudging experiments (Hansen et al. 2017). 509 

Improved observations of the stratosphere (e.g., aerosols and chemistry) and other climate 510 

components may improve S2S predictions. Finally, there is potential for modeling of 511 

stratospheric ozone chemistry which provides surface temperature predictability on S2S time 512 

scales due to its influence on high-latitude stratospheric circulation anomalies together with 513 

their lagged surface impacts (Stone et al. 2019).  Although that may currently be too resource-514 

intensive due to the many species and reactions that must be modeled, emerging machine-515 

learning techniques may provide pathways for incorporating chemistry-climate information into 516 

S2S forecasts (Nowack et al. 2018). 517 

 518 

Seasonal to decadal  519 

Modeling issues for S2D prediction naturally overlap with those for S2S prediction. However, 520 

the longer time scales of S2D prediction lead to a greater emphasis on representing slower 521 

climate variations such as ENSO and AMV, and greater attention to reducing model biases in 522 

the ocean that may take months to years to develop. Increased model resolution can reduce 523 

model biases as illustrated in Fig. 5 (Jia et al. 2015; Müller et al. 2018), and improve skill 524 
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(Prodhomme et al. 2016b; Schuster et al. 2019; Infanti and Kirtman 2019), although the greater 525 

computational cost is not always justified (Scaife et al. 2019). More fundamental strategies 526 

involve analyzing/understanding model biases, before attempting to correct them a priori or a 527 

posteriori. Such analysis methods include comparing hindcasts with observations and multi-528 

decadal historical or other simulations to distill causation for model errors, such as in the 529 

tropical Pacific (Shonk et al. 2018) or Atlantic (Voldoire et al. 2019). Similarly, errors in modeled 530 

variability or teleconnection patterns can be characterized by examining their evolution with 531 

lead time. Model biases can be corrected both through simple methods such as statistical bias 532 

correction and anomaly coupling (Toniazzo and Koseki, 2018), and more complex methods such 533 

as supermodeling, through which multiple models exchange information during a climate 534 

simulation (Shen et al. 2016). 535 

 536 

Performance of S2D predictions is strongly tied to initialization of model components beyond 537 

the lower atmosphere. For example, stratospheric initial conditions are a source of seasonal 538 

winter NAO skill (e.g., O’Reilly et al. 2019; Nie at al. 2019) as illustrated in Fig. 6, and ocean 539 

initial conditions are crucial for skillfully predicting ENSO (Balmaseda and Anderson 2009), as 540 

well as decadal variability in the subpolar North Atlantic (Yeager and Robson, 2017; Borchert et 541 

al. 2018). However, initialization using full-field observational values can lead to initial shocks 542 

affecting skill (Kröger et al. 2018) and in such cases initialization combining observed anomalies 543 

with the model’s own climatology can be beneficial until underlying model errors can be 544 

reduced (Volpi et al. 2017). Basic initialization strategies continue to be an active research area 545 

particularly for decadal prediction (Brune et al. 2018), and methods extending to forecast runs 546 
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such as the ensemble dispersion filter which replaces the ensemble members with the 547 

ensemble mean every three months (Kadlow et al. 2017) are also being explored. Comparisons 548 

that apply different initialization methods to the same model can yield valuable insights 549 

(Polkova et al. 2019); further issues specific to the initialization of the land, ocean, and sea ice 550 

components are considered in the next section. 551 

 552 

Tackling these diverse and persistent modeling issues effectively will require sustained effort, as 553 

simple model-specific solutions may not cure the underlying problems, and ideally this should 554 

involve coordination between the S2S/S2D prediction, climate modelling, and data assimilation 555 

communities. 556 

 557 

Initialization issues. 558 

Atmosphere initialization 559 

Accurate atmospheric model initialization is a basic requirement for numerical weather 560 

prediction because atmospheric initial conditions are the primary source of predictability on 561 

time scales less than a week or two (Fig. 1). It is enabled by sophisticated data assimilation 562 

systems that are the result of decades of advancement (Bauer et al. 2015). Subseasonal and 563 

seasonal prediction systems generally initialize their atmospheric components by such means, 564 

with the additional requirement that historical observations must be assimilated similarly to 565 

produce reanalyses that are used to initialize hindcasts. Because in situ and remotely sensed 566 

atmospheric observations are relatively dense there is generally good agreement between 567 

different reanalyses for the modern era implying relatively low uncertainty at heights below 568 
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about 10 hPa, although temporal inconsistencies can result from changes in observing systems 569 

(Long et al. 2017). Because atmospheric initial conditions contribute less to predicability on 570 

multi-annual time scales, some decadal prediction systems do not initialize the atmosphere 571 

(e.g., Yeager et al. 2018). 572 

 573 

Land initialization 574 

Climatically important land variables such as soil moisture and snow can be initialized by driving 575 

land surface models with observed atmospheric fields (e.g., Koster et al. 2009; Sospedra-576 

Alfonso et al. 2016a) or, more directly, assimilation of land observations principally from 577 

satellites (Bilodeau et al. 2016; Muñoz-Sabater et al. 2019; Toure et al. 2018). Yet predictability 578 

from land surface states is being harvested only to the extent that land initial conditions and 579 

the relevant processes are represented realistically in forecast models (Koster et al. 2011; 580 

Ardilouze et al. 2017). Historically, land surface and atmospheric models are developed 581 

separately and their coupled behavior is not calibrated or validated (Dirmeyer et al. 2019), so 582 

that coupled processes are often not represented accurately (Dirmeyer et al. 2018b). 583 

 584 

There are also observational limitations. In situ measurements of soil moisture are of varying 585 

quality and uneven distribution, and are not designed for real-time operational use (Dorigo et 586 

al. 2011). Satellite soil moisture monitoring (Entekhabi et al. 2010; Kerr et al. 2010), provides 587 

either very shallow or total column measurements including groundwater (Li et al. 2012), and is 588 

subject to uncertainties caused by vegetation, etc. (Al-Yaari et al. 2017). By contrast, soil 589 

moisture in forecast models is mainly a gross reservoir for the surface water balance, and its 590 
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variations do not represent all of the observed processes, particularly at sub-grid scales. 591 

Therefore model soil moisture is only a crude representation of reality, although it still contains 592 

useful information that can be largely consistent across different land models (Koster et al. 593 

2009). 594 

 595 

Climate forecasts can be improved by making high-quality land state observations an 596 

operational priority for real-time reporting, and planning for long-term continuity in satellite 597 

monitoring (Balsamo et al. 2018). This includes vegetation, especially as its interannual 598 

variability and cycles of agricultural planting and harvest are not represented and can affect 599 

surface fluxes and predictions (Alessandri et al. 2017). In addition, realistic snow initialization 600 

can positively impact subseasonal predictions of surface temperatures (e.g., F. Li et al. 2019). 601 

Along with coupled land-atmosphere model development (Santanello et al. 2018), such efforts 602 

would facilitate improved predictions on weather to subseasonal time scales, as demonstrated 603 

by numerous forecast model-based sensitivity studies such as that of Koster et al. (2011). 604 

 605 

Ocean and sea ice initialization 606 

The importance of initializing the oceans stems from their relatively long thermal and dynamical 607 

time scales, through which they play an essential role in S2D climate predictability (Cassou et al. 608 

2017). In addition, the oceans can influence S2S variability, for example through air-sea 609 

interactions affecting the MJO (DeMott et al. 2015) and mesoscale eddy impacts on 610 

atmospheric circulation (Saravanan and Chang 2019). Predicting future ocean evolution, 611 

especially on S2D time scales, requires estimates of 3D ocean states for initialization. This in 612 
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turn requires a data assimilation method (usually in conjunction with a dynamical model) to 613 

constrain ocean state estimates based on available observations. Similar considerations apply 614 

to state estimates of sea ice. Comparisons of different ocean and sea ice state estimates as in 615 

Fig. 7 can point to variables and regions for which they are most robust, as well as to where 616 

uncertainties are relatively large (Balmaseda et al. 2015; Chevallier et al. 2017). Observing 617 

system experiments in which certain observations are withheld have shown for example that 618 

data from tropical ocean moorings positively impacts state estimates even when Argo float 619 

data is also available (Fujii et al. 2015). 620 

 621 

Recent enhancements in observing capabilities are enabling improvements in ocean and sea ice 622 

state estimates, potentially leading to more accurate initial conditions and hence better 623 

forecasts. For example, assimilation of satellite measurements of sea surface salinity (SSS) leads 624 

to improvements in tropical Pacific ocean states and ENSO forecasts in experiments using an 625 

intermediate-complexity coupled model (Hackert et al. 2019), whereas assimilation of satellite-626 

derived sea ice thickness (SIT) measurements has shown potential for improving sea ice 627 

forecasts in operational seasonal forecasting systems (Chen et al. 2017; Blockley and Peterson, 628 

2018). A major limitation is that these data sources have been available for less than a decade, 629 

whereas considerably longer hindcast periods are required for forecast post-processing and skill 630 

assessment, and temporal consistency of observational data used for initialization is required to 631 

avoid artificial biases between hindcasts and forecasts. Forecasts thus continue to be initialized 632 

typically without assimilation of SSS or SIT, from initial conditions that deviate appreciably from 633 
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available observations especially for SIT (Uotila et al. 2019). This motivates alternative 634 

approaches for initializing SIT over multidecadal hindcast periods (Dirkson et al. 2017). 635 

 636 

Coupled data assimilation 637 

The atmosphere, land, ocean and sea ice components of climate prediction models have often 638 

been initialized individually, without coupling. However, such an approach does not make 639 

optimal use of observations, which may exert influences across the interfaces of the model 640 

components. In addition, physical inconsistencies between the separately initialized 641 

components may lead to rapid adjustments, or shocks. To overcome these limitations attention 642 

has increasingly turned toward developing coupled data assimilation methods that treat 643 

multiple components, such as atmosphere and ocean, simultaneously using observations from 644 

each (Penny and Hamill 2017). Such methods are termed weakly or strongly coupled (Penny et 645 

al. 2017). Weakly coupled methods apply assimilation independently to each model component 646 

within the coupled model, so that the components may exchange information across their 647 

interfaces. Such techniques have shown promise for reducing shocks (Mulholland et al. 2015), 648 

and have begun to be applied operationally (e.g., Browne et al. 2019). Strongly coupled 649 

methods apply assimilation to multiple model components in an integrated manner, so that 650 

observations assimilated in one component can directly influence others. Such methods 651 

remain experimental and thus far have been applied mainly in simplified models (e.g., Penny et 652 

al. 2019). 653 

 654 

Ensemble predictions and forecast information. 655 
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Subseasonal to Seasonal   656 

In contrast to ensemble weather forecasts, a consolidated verification strategy for S2S 657 

predictions is not yet established, and developing such a framework that encompasses 658 

important forecast attributes such as accuracy, association, discrimination, reliability, and 659 

resolution has thus emerged as a priority (Coelho et al. 2018). (Accuracy measures error, or 660 

distance between forecast and observed values; association measures strength of the linear 661 

relationship between forecast and observation as through temporal or spatial correlations; 662 

discrimination measures by how much forecasts differ given different outcomes; reliability 663 

measures how well forecast probabilities correspond to observed frequencies of occurrence; 664 

resolution measures by how much outcomes differ given different forecast probabilities. 665 

Forecast quality encompasses all these attributes, whereas skill indicates quality relative to 666 

some benchmark such as persisted anomalies or climatological probabilities.) As for seasonal 667 

predictions, a purpose of S2S hindcasts is to provide a larger sample for more confident 668 

verification statistics than real time forecasts because they cover more years. However, 669 

because S2S hindcasts are initialized using re-analysis and most often have a smaller ensemble 670 

size, their verification generally underestimates real-time forecast quality. Operational centres 671 

are encouraged to compute and monitor verification statistics based both on hindcasts and 672 

real‐time forecasts. 673 

 674 

As has been demonstrated for seasonal prediction, S2S multi-model ensembles (MMEs) 675 

generally outperform individual models (Vigaud et al. 2017; Pegion et al. 2019). Currently, the 676 
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S2S and SubX MME projects are providing testbeds for research3 as well as a foundation for 677 

operational use (Vitart and Robertson 2019; Pegion et al. 2019). One focus for exploiting such 678 

datasets is developing calibration procedures, post-processing steps that improve the 679 

properties of probabilistic forecasts, to enable S2S ensemble forecasts to provide reliable 680 

probabilities for particular conditions occurring or thresholds being exceeded, especially for 681 

extreme events. The varied current choices among S2S project modelling systems for hindcast 682 

and near real time initialization dates, hindcast period and ensemble size is, however, limiting 683 

advances in developing multi-model calibration and combination procedures. In addition, the 684 

value of these datasets for research would be enhanced if more comprehensive stratospheric 685 

data were to be available across models. 686 

 687 

S2S ensemble forecasts have shown promise in providing useful predictions and early warnings 688 

for high impact climate and weather events including severe heat waves and cold spells, as well 689 

as regional probabilities of the occurrence of tropical storms as illustrated in Fig. 8 (Vitart and 690 

Robertson 2018). Examples include severe cold conditions over Europe associated with the 691 

negative phase of the NAO, whose useful predictability into week 3 is enhanced by tropical–692 

extratropical teleconnections resulting from MJO activity (Ferranti et al. 2018), and atmospheric 693 

rivers, plumes of intense water vapor transport that often trigger weather and hydrologic 694 

extremes and are especially predictable at lead times of 3 to 5 weeks during certain MJO and 695 

QBO phase combinations (Baggett et al. 2017). While modest overall skill at ranges longer than 696 

                                                           

3 Hindcast and near real-time forecast data are available from S2S at www.s2sprediction.net and from SubX at 
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/. 

http://www.s2sprediction.net/
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a week has been found for S2S predictions of springtime Sahelian heat waves including 697 

measures of heat stress, such conditions following a strong El Nino were accurately forecast, 698 

pointing to the tropical Pacific as a source of predictability for extremes in that region (Batté et 699 

al. 2018). 700 

 701 

A global precipitation hindcast quality assessment of the S2S prediction project models (Fig. 9) 702 

was performed by de Andrade et al. (2019).  Sub-seasonal prediction quality is modulated by 703 

the MJO, QBO, ENSO in the tropics, changes in large-scale flow in the extra-tropics and 704 

stratospheric tropical and extratropical variability (Butler et al. 2019). It is therefore important 705 

to estimate the predictive skill of such events and identify their impacts on predictions of 706 

weather and weather extremes. Evaluating the conditional prediction quality associated with 707 

the key low frequency variability modes is instrumental for better understanding S2S 708 

predictability mechanisms. For example, MJO predictive skill in the S2S MME ranges between 709 

12 to 36 days and is affected both by the MJO amplitude and phase errors (Vitart 2017; Lim et 710 

al. 2018; H. Kim et al. 2018). Communicating these variations in forecast quality, including if the 711 

forecasts are no better than climatology, is extremely important as users with such knowledge 712 

can better utilize and benefit from the forecast information. Furthermore, capitalizing on 713 

“windows of opportunity” when skill is especially high increases the value of S2S forecasts 714 

(Mariotti et al. 2020), and motivates their frequent initialization (ideally daily). 715 

 716 

Seasonal to decadal            717 
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Limited forecast quality in current S2D ensemble prediction systems motivates research 718 

initiatives that focus on extracting skillful and reliable information from the large amounts of 719 

forecast and hindcast data available to potential users4. 720 

 721 

One emerging theme of such research is that S2D prediction systems sometimes underestimate 722 

the predictable signal (Eade et al. 2014; Scaife and Smith 2018). As a result, very large ensembles 723 

that effectively filter out unpredictable noise demonstrat higher skill in predicting phenomena 724 

such as the winter NAO (Scaife et al. 2014b; Dunstone et al. 2016) and seasonal to multi-annual 725 

regional precipitation variations (Dunstone et al. 2018; Yeager et al. 2018) than was previously 726 

thought possible. While very large ensemble sizes hold value for isolating weak predictable 727 

signals, much smaller ensemble sizes are sufficient for skillful prediction of tropical SST, for which 728 

signal to noise ratios are much larger (Zhu et al. 2015). The causes of unrealistically low modeled 729 

predictable signals (sometimes called the “signal to noise paradox”) remain under investigation. 730 

Two hypotheses stemming from hindcast experiments are that winter NAO skill is enhanced by 731 

skillful prediction of a QBO teleconnection that is too weak in models (O’Reilly et al. 2019), and 732 

that transient eddy feedbacks are too weak in models (Scaife at al. 2019). Others based on simple 733 

models suggest that the NAO predictable signal is too weak because climate models switch 734 

                                                           

4 Seasonal hindcast data from the WCRP Climate-system Historical Forecast Project (CHFP; Tompkins et al. 2017) 
are available at http://chfps.cima.fcen.uba.ar/access.php, and from the North American Multi-Model Ensemble 
(NMME, Kirtman et al. 2014) including real-time forecasts at 
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/. Decadal hindcast data from the WCRP Coupled Model 
Intercomparison Project Phases 5 and 6 are available via https://esgf-node.llnl.gov/projects/cmip5/ and 
https://esgf-node.llnl.gov/projects/cmip6/. 
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between NAO regimes too rapidly (Strommen and Palmer 2019), or exhibit less persistent NAO 735 

variability than is observed (Zhang and Kirtman 2019). 736 

 737 

In the case of the winter NAO which is a key source of variability over the mid-latitude North 738 

Atlantic and Europe, another approach to extract relevant information from over-dispersive 739 

ensembles that leads to improved skill is to subsample ensemble members that are close to a 740 

“first guess” statistical prediction of the NAO (Dobrynin et al. 2018); subsampling has shown 741 

potential for improving European summer forecasts as well (Neddermann et al. 2019). 742 

 743 

Estimating and realizing the predictability of key modes of variability is still a major challenge at 744 

S2D time scales. ENSO is considered one of the most predictable phenomena on multi-seasonal 745 

time scales, but longer-range skill has been viewed as limited. However, multi-year ensemble 746 

predictions have shown evidence of skill in predicting long-lasting La Niña events that follow 747 

warm events up to 24 months ahead (DiNezio et al. 2017; Luo et al. 2017). Challenges in the 748 

initialization of such longer time scale predictions remain, as evidenced by multi-year predictions 749 

in which skill for SST and precipitation over land improves with lead time in some areas, 750 

suggesting that short-term adjustments following initialization may tend to degrade skill (Yeager 751 

et al. 2018). 752 

                 753 

Calibration of ensemble forecasts is a necessary step to reduce the areas for which S2D forecasts 754 

are unreliable and potentially misleading. Combinations of several forecasting systems such as 755 

the North American Multi-Model Ensemble (NMME, Kirtman et al. 2014) are now routinely used 756 
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to increase ensemble reliability and improve forecast skill. Several recent efforts have explored 757 

weighted multi-model calibration methods to combine ensembles from different models in order 758 

to improve probabilistic seasonal forecasts for temperature and precipitation anomalies as well 759 

as forecast of extremes (Becker 2017). Calibration methods have also been developed for 760 

ensemble decadal hindcasts to adjust both the bias and ensemble spread with a parametric 761 

dependency on lead time and initialization time (Pasternack et al. 2018). Such methods are found 762 

to improve both the conditional bias and probabilistic skill of decadal hindcasts. 763 

 764 

Climate forecasts for decision making. 765 

Subseasonal to Seasonal   766 

Many decisions are made on the S2S forecasting timescale, which sits between weather 767 

forecasts and S2D climate outlooks; therefore the continued development of S2S forecasts has 768 

the potential to benefit many sectors of society (Fig. 10). S2S forecasting is a rapidly maturing 769 

discipline, with emerging recognition for both the need and the potential use of forecasts on 770 

this timescale (White et al. 2017). While S2S forecasts are increasingly being used in 771 

government as well as a range of sectors including agriculture, energy, finance, health and 772 

water resource management – more engagement between S2S forecasters and end users is 773 

needed to increase the wider awareness and uptake of S2S forecasts.  774 

 775 

Although scientific knowledge gaps, computational capacity, and gaps in observations and 776 

modeling currently limit the use of S2S forecasts to some degree, by increasingly placing 777 

decision makers at the forefront of S2S forecast development, an improved dialogue between 778 
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S2S forecasters, developers and end users will accelerate the awareness and application of S2S 779 

forecasts to real-world decision-making.  780 

 781 

To support the increased use of S2S forecasts for decision-making, the following 782 

recommendations were identified for action following the Boulder conference: 783 

● A summary of existing stakeholder case studies is planned to be created to demonstrate past 784 

and ongoing ‘success stories’, and support better engagement with end users and 785 

stakeholders. As the S2S forecast needs and associated performance varies greatly between 786 

different sectors and users, the wider community is increasingly working together on the co-787 

design and production of S2S predictions in order to better meet user needs. Several 788 

applications of S2S forecasts are now being developed in different disciplines, such as the 789 

EU-funded S2S4E project in the energy sector, a quasi-operational excess heat outlook 790 

system in the health sector (Lowe et al. 2016), and S2S hydrologic prediction in the water 791 

management sector. These efforts need to be catalogued and disseminated to guide further 792 

user-driven decision-support products, and to support the continued development of S2S 793 

forecast, verification metrics and related services.  794 

● Systematically assessing the relative skill (or lack thereof) of forecasting a series of historical 795 

high-impact events, such as heat waves, extreme rainfall events, or wildfires, on the S2S 796 

timescale would be a useful way to help demonstrate the potential of S2S forecasts to 797 

decision-makers across multiple sectors. At present, such case studies are often ad-hoc and 798 

typically not published in the wider literature; however, a collaborative effort that brings 799 

together a set of demonstrable case studies, involving both forecasters and end users, would 800 

https://s2s4e.eu/
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fill this gap. For example, a series of ‘tailored narratives’, or ‘storylines’  (approaches that 801 

construct stories of plausible, non-probabilistic climatic futures that relate to a specific 802 

person or sector to counter perceived barriers; e.g., Hazeleger et al. 2015), may aid in the 803 

understanding of what S2S forecasts may deliver in the future. 804 

● To support the co-design, uptake and use of S2S forecasts, S2Sapp.net is currently being 805 

established as a new network of researchers, modellers and practitioners – an ‘open to all’ 806 

global community with a shared aim of exploring and promoting cross-sectoral services and 807 

applications of this new generation of forecasts from across government, academia, and the 808 

private sector. 809 

 810 

Seasonal to decadal 811 

Research efforts are assessing the value of S2D forecast information for many applications, and 812 

initiatives such as the WMO’s Global Seasonal Climate Update5 and Annual to Decadal Climate 813 

Update (Kushnir et al. 2019) are making such information more widely available. However, 814 

consultation with decision makers is essential in order to tailor forecast information to the needs 815 

and expectations of users. 816 

 817 

Fisheries management is one application for which S2D forecast information holds promise 818 

(Tommasi et al. 2017). This is due to reasonable skill for ocean prediction in regions of interest, 819 

coupled with strong influences of S2D climate variability on fish populations. Case studies 820 

                                                           

5 https://public.wmo.int/en/our-mandate/climate/global-seasonal-climate-update 
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employing fisheries management decision frameworks have shown that SST forecast information 821 

can potentially increase fishery yields while reducing the risk of population collapse from 822 

combined effects of environmental factors and overfishing. However, significant challenges 823 

remain for fully realizing this potential. These include a need for improved initialization and 824 

reduced model errors in key ocean regions such as the US Northeast continental shelf, dynamical 825 

downscaling in cases where important spatial scales are not resolved by global models, and 826 

sufficiently accurate observational data for hindcast verification on these scales. In addition, 827 

incorporating biogeochemistry and marine ecosystem components into prediction systems will 828 

expand their potential capabilities, while posing additional verification challenges. 829 

 830 

Another current focus of application-oriented research is water management. Global climate 831 

prediction models have been shown to have skill in predicting the next winter season’s snowpack 832 

throughout much of the western US, where spring snowmelt is an essential water resource 833 

(Kapnick et al. 2018; Sospedra-Alfonso et al. 2016b). Because temperature influences snowmelt 834 

and runoff efficiency, skill in seasonal temperature forecasts can provide improved skill for 835 

seasonal water supply forecasts in this region (Lehner et al. 2017).  Seasonal forecast skill has also 836 

been demonstrated for monsoon rainfall (e.g., Jain et al. 2019) and drought (Hao et al. 2018) with 837 

potential to inform water management decisions in many regions of the globe. Decadal forecasts 838 

potentially can meet planning horizon needs but currently are less familiar to water managers 839 

than seasonal forecasts and long-term climate projections. Efforts to apply decadal climate 840 

information for water management decisions have included assessing the role of decadal modes 841 

of variability, and using statistically downscaled decadal predictions as hydrological model inputs. 842 
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Developing information that is credible and compatible with existing decision frameworks is an 843 

important consideration (Towler et al. 2018). 844 

 845 

Additional sectors for which S2D forecasts are being assessed for decision making include 846 

agriculture (Klemm and McPherson, 2017), energy (demand & wind power generation, Clark et 847 

al. 2017; Lledó et al. 2019), tropical cyclone (Bergman et al. 2019) and coastal flooding (Widlansky 848 

et al. 2017) preparedness, Arctic marine transportation (Stephenson and Pincus 2018), wildfire 849 

risk (Turco et al. 2019), and food security (Funk et al. 2019). 850 

 851 

Initiatives to develop and deliver climate forecast information range in scale from international, 852 

regional and national (e.g., Marotzke et al. 2016), to individual users, all of which aim to provide 853 

forecast information having practical value for decision makers. In all cases, it is crucially 854 

important that uncertainties are adequately quantified and conveyed in order to avoid any false 855 

sense of certainty and to build trust in forecast information providers, although sometimes this 856 

requires overcoming a preference of users for deterministic information. Additional 857 

considerations are that expectations of users need to be conditioned to generally modest levels 858 

of skill, but that this information can nonetheless be advantageous when applied consistently in 859 

the long term. The likelihood that climate forecast information gets used increases when efforts 860 

are made to build relationships with potential users, and dialogs are opened to enable forecast 861 

products to be co-designed (Kolstad et al. 2019). 862 

 863 

Cross-cutting issues in S2S and S2D prediction. 864 
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 Initialization shock and model error  865 

Model biases are an endemic modeling issue that is common across S2S and S2D prediction 866 

time scales and influence all aspects of the prediction systems – complicating ingestion of 867 

assimilated observations, degrading skill, and necessitating post-processing steps such as bias 868 

correction and calibration for product development and delivery. 869 

 870 

Model biases begin to develop on fast time scales and lead to drifts from the climate 871 

represented by the initial conditions to that of a model’s biased equilibrium state. It has been 872 

extremely hard to understand the mechanisms behind these drifts, and further, pathways for 873 

their diagnosis are not clear although some progress is being made (Sanchez-Gomez et al. 2015; 874 

Shonk et al.  2018; Voldoire et al. 2019). Such difficulties arise due to non-linear interaction 875 

between various physical processes that are parameterized, and because biases could be non-876 

local in their origin. Long time scales before models’ equilibrium states are attained make 877 

understanding the causes of drifts even harder. The Boulder meeting recognized that the 878 

S2S/S2D prediction community needs to pay particular attention to developing pathways for 879 

understanding the onset of model biases and put together mechanisms (such as summer 880 

schools) to train the next generation of scientists with interest and expertise in climate 881 

modeling and model diagnostics. 882 

 883 

Initialization shocks that arise from imbalances in initial states with respect to the formulation 884 

of the model and can be caused by limitations of observations and data assimilation as well as 885 

model biases were also recognized as a major issue, particularly in the context of decadal 886 
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predictions. Initialization shocks result in the degradation of initial information that may be the 887 

primary source of predictability for the subsequent forecast. Even after considerable research 888 

and investment in decadal predictions it is still not clear what may be best approaches, such as 889 

between full field vs. anomaly initialization, to retain predictive information in the initial state 890 

while minimizing the influence of initial shocks on the subsequent forecast. The continuing 891 

prominence of model drift and initial shocks as important issues reinforces a long held 892 

sentiment that these are outstanding problems that need to be studied more systematically if 893 

progress in translating inherent predictability into prediction skill is to be made. 894 

 895 

S2S and S2D research interactions 896 

The examples of interaction among modes of variability across S2S and S2D time scales noted 897 

earlier emphasize the fact that continued interaction and communication across the S2S and 898 

S2D research communities will be important to make progress. Furthering our understanding of 899 

time-scale interactions will require investments in process level understanding of these 900 

phenomena and will not only benefit our understanding about their lower-frequency variations 901 

but will also contribute to improved process level diagnostics of model simulations. Better 902 

understanding of time-scale interactions is likely to require the use of a hierarchy of models, 903 

such as simple linear models to investigate the characteristics of tropical-extratropical 904 

interactions (including their influence on storm tracks), to diagnose possible causes for errors in 905 

their representation in complex GCMs (Dias et al. 2019). 906 

 907 



38 
 

Another aspect of research interactions across time scales is quantifying the fidelity of models 908 

in S2S and S2D prediction as well as projections of climate on longer time scales based on their 909 

simulation and prediction of shorter time-scale phenomena. The advantage of such an 910 

approach is that much larger samples for predictions of shorter time-scale phenomena are 911 

available, and an assessment of the reliability of such predictions can be used to build 912 

confidence in prediction on longer time-scales. Theoretical basis for extrapolating the reliability 913 

of forecasts across different time scales may also require the use of a hierarchy of models 914 

(Weisheimer and Palmer 2014; Christensen and Berner 2019). 915 

 916 

Research and operations 917 

Post-processing to improve forecast quality is an important area of research that bears directly 918 

on operational activities. Post-processing is necessary because biases in forecasts can be as 919 

large as the predicted signal, and therefore require the use of bias correction and calibration 920 

techniques to adjust real-time predictions before their delivery to the users. These 921 

requirements are shared across sub-seasonal to decadal prediction time-scales, however 922 

because of different levels of experience (seasonal predictions having the longest history) the 923 

opportunity for cross-community interactions was recognized. Some aspects for post-924 

processing are specific to time-scale, for example, bias correction for decadal predictions 925 

requires methods to account for the non-stationarity of climate, and research needs to develop 926 

such methods were stressed. 927 

 928 
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Necessity for post-processing requires an extensive set of hindcasts to accompany real-time 929 

predictions. Because of limited resources, decisions about hindcast period, ensemble size and 930 

forecast start dates are not straightforward and call for further guidance from the research 931 

community. Such questions about the operational infrastructure for long-range prediction 932 

systems, including ensemble generation techniques and recommendations for harmonizing 933 

hindcast and real time forecast production, provide an opportunity to link operational and 934 

research communities that was highlighted during the conference. 935 

 936 

Product development and communicating forecasts to the user community is also a common 937 

thread across the S2S and S2D communities. Communication of probabilistic forecast 938 

information (including confidence in the forecast based on past verifications) to users for their 939 

decision making has been a challenge, and once again there is much to be gained from lessons 940 

learned from the experiences of different communities. Similar challenges and opportunities 941 

also exist in the context of product development that incorporate user needs based on an 942 

ongoing dialog from the very start of the process. In addition, users often wish to have 943 

information on smaller spatial scales than are represented in global climate models. For such 944 

applications either statistical or dynamical downscaling is possible and can be effective in 945 

reducing local climatological biases, although clear demonstrations that downscaling can 946 

improve the skill of climate predictions remain elusive (e.g., Manzanas et al. 2018).   947 

 948 
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In summary, research needs for further development of operational infrastructure, product 949 

generation and communication of probabilistic forecasts were themes often repeated during 950 

the conference.  951 

 952 

Conclusions and the future of subseasonal to decadal prediction 953 

This paper has outlined many commonalities in the prediction of weather and climate across 954 

time scales and Earth system components, and through the value cycle from basic research to 955 

operational delivery. 956 

  957 

The Earth’s weather and climate is inherently chaotic and challenges the best currently 958 

available modeling capabilities. There remains however untapped skill, and realizing this skill 959 

will require improvements on numerous fronts. These include fundamental understanding of 960 

fine-scale processes, leading toward their robust parameterization; accurately representing 961 

property exchanges across Earth system components through realistic coupling limiting 962 

systematic errors; sustained Earth observing systems and advanced data assimilation methods 963 

enabling balanced initial conditions that avoid shocks and mitigate model drifts; and innovative 964 

numerical and ensemble generation techniques to address model scalability issues. Additional 965 

important avenues toward improved services include development of probabilistic information 966 

for high impact weather and climate events including unprecedented extremes, and optimal 967 

post-processing and data fusion to add value to multi-model ensembles, among many others. 968 

  969 
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These challenges are broad but so are opportunities for steady progress, ranging from curiosity-970 

driven science to the systematic model evaluation and improvement in a collaborative and 971 

open research/operational environment. 972 

  973 

The joint WWRP-WCRP conferences in Boulder clearly demonstrated the benefit in bringing 974 

relevant stakeholders together to cross-fertilize their experience, knowledge, respective issues 975 

and working cultures, which will surely help frame a new and vibrant research portfolio, and 976 

inspire the next generation of science leaders to ensure that society has access to the best 977 

possible weather and climate prediction science. 978 
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SIDEBAR 1:  1693 

Hindcast and forecast quality assessment (or, “the unexamined life is not worth living”). 1694 

Besides helping to inform decision making, the careful assessment of forecast quality is critical 1695 

to guiding forecasting improvements, but has many and varied considerations. Simply 1696 

answering the question “is this forecast better than that one?” is complicated, as the 1697 

appropriate skill metric or means for comparison is not always obvious. Some recent studies 1698 

have focused on newer statistical methods for comparing one forecast to another. One 1699 

relatively simple approach is the random walk test (DelSole and Tippett 2016), illustrated in Fig. 1700 

SB1. This method is applicable to a wide range of measures such as a score based on the earth 1701 

mover’s distance metric (Düsterhus 2019), while also being robust and fair in its discrimination.  1702 

 1703 

The utility of forecast assessment can be illustrated through two very different applications of 1704 

seasonal forecasts: sea-ice and hurricanes. The assessment of seasonal sea ice forecasts is 1705 

complicated by the low quality of sea-ice observations, but nevertheless reveals that initializing 1706 

sea-ice thickness using observational data sets generally improves the prediction of Arctic sea-1707 

ice extent and edges (Blockley et al. 2018). Comparison of multi-annual forecasts of Atlantic 1708 

hurricane activity obtained by direct tracking of storms in decadal hindcasts and through a 1709 

hybrid approach combining predicted SSTs and observed statistical relations finds that each 1710 

approach is skillful, especially hybrid forecasts based on a SST index for AMV (Caron et al. 1711 

2018). 1712 

 1713 
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A robust assessment of model performance should include the model’s simulation of climate 1714 

modes and teleconnection patterns such as ENSO, MJO and NAO, since they are major sources 1715 

of predictability and errors representating their patterns or strength (e.g., Yang and DelSole 1716 

2012; Vitart 2017) can degrade skill in affected regions (Gleixner et al. 2017; Lu et al. 2017). In 1717 

cases where modeled teleconnection patterns are imperfect, forecast skill may be improved by 1718 

means of statistical methods that use model forecasts of relevant climate modes such as ENSO 1719 

as predictors (e.g., Strazzo et al. 2019). It remains desirable, however, for models to improve so 1720 

that their simulated teleconnection patterns are sufficiently realistic that such corrections are 1721 

not needed.  1722 

 1723 

SIDEBAR 2:  1724 

Frontiers in Earth system prediction.   1725 

New frontiers in S2D prediction have been enabled by Earth system models (ESMs, Flato 2011) 1726 

that represent the carbon and other biogeochemical cycles in addition to the physical climate 1727 

system. These frontiers include prediction of ocean and land carbon sinks and biogeochemistry 1728 

and their important contribution to global carbon storage, as well as ecosystem services. The 1729 

world's oceans are a fundamental regulator of global carbon storage and variability. The 1730 

strength of ocean carbon uptake, together with uptake of carbon by the land, determines the 1731 

fraction of anthropogenic emissions remaining in the atmosphere, and hence modulates 1732 

present and future warming. Observed global mean ocean carbon uptake shows variability on 1733 

decadal time scales that can be represented by ESMs in which physical climate variables are 1734 

assimilated (H. Li et al. 2019).  1735 
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 1736 

ESM simulations indicate that internal variability of the ocean carbon uptake on decadal 1737 

timescales is as large as the forced climate change trend (Li and Ilyina 2018), pointing to the 1738 

potential importance and utility of decadal carbon cycle predictions. Decadal predictions from a 1739 

number of ESMs are assessing the predictability of the ocean and land carbon sinks and other 1740 

ocean tracers such as dissolved oxygen. These forecasts are part of the Decadal Climate 1741 

Prediction Project (Boer et al. 2016) and international programs such as the World Climate 1742 

Research Programme’s Grand Challenge on Carbon Feedbacks (Ilyina and Friedlingstein 2016). 1743 

Initial results based on individual models have demonstrated potential predictive skill, assessed 1744 

through verification against the assimilating reconstructions that provide initial conditions, for 1745 

ocean carbon uptake in certain regions such as the North Atlantic reaching up to 7 or more 1746 

years (Li et al. 2016; Lovenduski et al. 2019), and skill in predicting actual variations estimated 1747 

from observations (Fig. SB2) has been demonstrated (Li et al. 2019).  1748 

ESM-based studies also point to the drivers of this predictability. Air-sea CO2 flux mainly varies 1749 

due to pCO2 changes in the ocean. While thermal influences on pCO2 play a role in shorter term 1750 

predictability, predictability beyond 3 years is maintained mainly by nonthermal influences of 1751 

ocean circulation and biological modification of surface dissolved inorganic carbon and 1752 

alkalinity (Li et al. 2019; Lovenduski et al. 2019).  1753 

 1754 

Investigations in progress are finding potential for multi-annual prediction of additional 1755 

biogeochemical fields such as net primary productivity and interior dissolved oxygen 1756 

concentrations. In addition, potential predictability and skill for terrestrial carbon uptake have 1757 
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also begun to be assessed, with promising initial results (N. Lovenduski 2019, personal 1758 

communication). These examples demonstrate that skillful multi-year prediction is likely 1759 

achievable for biogeochemical and ecological Earth system components, and open prospects 1760 

for the utilization of such information although significant challenges including the paucity of 1761 

long term observational data for initialization and verification will need to be overcome. 1762 

 1763 

 1764 

 1765 

 1766 

 1767 

 1768 
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 1769 

 1770 

Fig. 1. Schematic depiction of temporal ranges and sources of predictability for weather and climate 1771 

prediction. The subseasonal range encompasses the S2S time scales, and the seasonal and annual-to-1772 

decadal ranges the S2D time scales, that are considered in this paper. Longer multi-decadal and 1773 

centennial ranges derive predictability mainly from forcing scenarios rather than initial conditions, and 1774 

are typically represented through climate projections originating from historical simulations begun in 1775 

preindustrial times rather than predictions initialized from more recent observation-based climate 1776 

states. Some important sources of predictability and approximate time scales over which they are most 1777 

influential on surface climate are indicated in the upper portion of the figure; acronyms are defined and 1778 

associated phenomena are discussed in the main text. 1779 
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 1780 
 1781 
Fig. 2. Forecast probabilities of 13 SSW that occurred on the indicated dates as a function of lead time, 1782 

based on ensemble hindcasts from the ECMWF monthly forecasting system. Most of the SSWs are 1783 

predicted between 8 and 12 days lead time with a probability of 0.5–0.9, which is considerably larger 1784 

than the average frequency of SSW occurrence. (From Karpechko 2018.) 1785 
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 1786 
 1787 

Fig. 3. Skill for predicting linearly detrended Sahel summer rainfall in years 2-5 (upper panels) and year 1 1788 

(lower panels) in DePreSys hindcasts. Panels (a)-(b) show spatial distributions of anomaly correlation 1789 

coefficients with stippling indicating 95% significance. Panels (c)-(d) show time series of normalized 1790 

predicted and GPCC observed rainfall anomalies in the Sahel region outlined by the boxes in the maps, 1791 

with correlations and their 5–95% confidence intervals indicated.  (From Sheen et al. 2017.) 1792 
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 1793 
 1794 
Fig. 4. Influence of QBO phase on MJO amplitude. (a) Standard deviation of wintertime outgoing 1795 

longwave radiation (OLR), filtered to retain temporal and spatial scales characteristic of the MJO, for all 1796 

winters in 1979 to 2012. Differences from these values in winters characterized by QBO westerly 1797 

(WQBO) and easterly (EQBO) phases are shown (b) and (c) respectively. (d) Amplitude of an OLR‐based 1798 

MJO index (OMI) as a function of MJO phase for WQBO, EQBO and all winters. (From Yoo and Son 2016.) 1799 
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 1800 
 1801 

Fig. 5. Impact of resolution on precipitation biases in GFDL seasonal prediction models. Atmospheric 1802 

resolution is approximately 50 km with 32 levels in FLOR (upper panel), and approximately 200 km with 1803 

24 levels in CM2.1 (lower panel), whereas ocean resolution is approximately 100 km in both models. 1804 

Higher atmospheric resolution in FLOR reduces precipitation biases in numerous regions including much 1805 

of the tropics. Annual mean biases over land in mm day-1 based on 1981-2010 CMAP observations are 1806 

shown. (After Jia et al. 2015.) 1807 
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 1808 

Fig. 6 Connection between stratospheric initial conditions and predicted winter NAO for UK Met Office 1809 

GloSea5 predictions initialized 1 November 1995-2012. Left: correlation between initial zonal wind 1810 

anomaly on 1 November and ensemble mean model-predicted surface NAO index (NAOm) during DJF. 1811 

Black dots represent values significant at α = 0.05 confidence based on one-tailed test, and mean values 1812 

within the red box define an index Ui. Right: Annual standardized Ui (blue), NAOm (red) and observed 1813 

surface NAO index, NAOo (black). The correlation of Ui with NAOm, indicated at lower left, is significant at 1814 

α = 0.05 confidence whereas the lower correlation of Ui with NAOo is not unexpected based on signal to 1815 

noise considerations and that there is only one realization of observations. The larger correlation of 1816 

predicted and observed winter NAO values r(NAOm, NAOo)=0.62 suggests that additional sources of 1817 

predictability exist.  (After Nie et al. 2019.) 1818 



85 
 

 1819 
Fig. 7. Consistency across an ensemble of ocean state estimates of depth-averaged salinity over 0–1820 

700m, from the Ocean Reanalyses Intercomparison Project. Ensemble standard deviations in both the 1821 

1993-2010 means (upper panel) and interannually varying monthly anomalies (lower panel) tend to be 1822 

largest in eddy active regions such as the Gulf Stream, and less well-observed regions such as the 1823 

Southern Ocean. These differences across state estimates are reflective of uncertainties in ocean initial 1824 

conditions. (After Balmaseda et al. 2015.) 1825 
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 1826 

Fig. 8. Elevated probabilities of tropical cyclone occurrence during 31 January to 6 February 2011, based 1827 

on ECMWF ensemble forecasts forecast starting 13 January with 18 day lead time (left), and 27 January 1828 

with 4 day lead time (right). Destructive Cyclone Yasi made landfall in northeastern Australia on 3 1829 

February 2011 as a destructive category 5 storm. (Adapted from Vitart and Robertson 2018). 1830 

 1831 

 1832 

 1833 

 1834 

 1835 
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 1836 
 1837 

Fig. 9. Global averages of correlations between hindcast and observed precipitation anomalies over the 1838 

80°S to 80°N latitudinal band for weeks 1-4 for S2S project models initialized from November to March, 1839 

1999–2009. Left: Hindcast quality assessment based on ensemble means using the full ensemble size for 1840 

each model, as indicated in the figure legend. Right: Hindcast quality assessment based on ensemble 1841 

means using three ensemble members for each model. The reduced spread of the lines shown in the 1842 

right panel when ensemble sizes are identical compared to the spread of the lines shown in the left 1843 

panel demonstrates the value of the use of larger ensembles for subseasonal precipitation forecasting. 1844 

(Adapted from de Andrade et al. 2019.) 1845 
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 1846 
Fig. 10. Schematic illustration of relationships between a S2S forecast range of 10-30 days and other 1847 

prediction timescales, including examples of actionable information that can enable decision making by 1848 

various sectors. Indicated actions are examples that are not exclusive to a particular forecast range. 1849 

(After White et al. 2017.)  1850 
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 1851 
 1852 

Fig. SB1. Random walk test comparing monthly mean forecasts of the Niño 3.4 index for equatorial 1853 

Pacific SST at 2.5-month lead, between the multi-model mean (MMM) and individual models in the 1854 

NMME. Counts (vertical axis) increase by 1 when MMM squared error is smaller than that an individual 1855 

model (MMM more accurate) and decrease by 1 otherwise (individual model more accurate), and are 1856 

accumulated forward for all initial months and years (horizontal axis). Accumulated counts above or 1857 

below the shaded region indicate skill differences  according to the squared error metric that are 1858 

significant with >95% confidence (MMM more skillful above the shaded region and individual model 1859 

more skillful below). Niño 3.4 anomalies are relative to 1982–98 climatological values, and span each 1860 

month in 1999-2015. (From DelSole and Tippett 2016.)  1861 
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 1862 
 1863 
Fig. SB2. Temporal evolution and predictive skill of global CO2 flux into the ocean from the MPI-ESM-HR 1864 

decadal prediction system. (A) Annual values of anomalous CO2 flux into the ocean from data–based 1865 

estimates (SOM-FFN; gray) and MPI-ESM uninitialized simulations (blue), year 2 of initialized decadal 1866 

predictions (red) and data-constrained assimilation run (black). Anomaly correlations and root-mean-1867 

square errors (in parentheses) verifying against SOM-FFN data are indicated. (B) Anomaly correlation 1868 

skill for global CO2 flux into the ocean, verifying against SOM-FFN. The blue dot and dashed line show 1869 

the uninitialized skill for which lead time is not relevant, and the red dots initialized skill for different 1870 

forecast years, with 90% confidence intervals and P values based on a bootstrap approach indicated.   1871 

(C) Like (B), but verifying against the assimilation run. (After Li et al. 2019.)  1872 


