735 research outputs found

    Gemini Planet Imager observational calibrations XV: instrument calibrations after six years on sky

    Get PDF
    The Gemini Planet Imager (GPI) is a high-contrast adaptive optics instrument designed to detect and characterize substellar companions and circumstellar debris disks around nearby young stars using infrared integral field spectroscopy and polarimetry. GPI has been in routine operations at Gemini South for the past six years. Because precise astrometry and photometry of exoplanets is critical to GPI's science, we undertook extensive efforts both in-lab and on-sky to refine the astrometric and photometric calibration of the instrument. We describe revisions to the GPI Data Reduction Pipeline (DRP) that account for these revised calibrations, and that fix several issues identified over the previous six years, including some subtle issues affecting astrometric calibrations caused by a drift of the instrument’s clock. These calibrations are critical for the interpretation of observations obtained with GPI, and for a comparison with measurements from other high-contrast imaging instruments

    Gemini Planet Imager observational calibrations XV: instrument calibrations after six years on sky

    Get PDF
    The Gemini Planet Imager (GPI) is a high-contrast adaptive optics instrument designed to detect and characterize substellar companions and circumstellar debris disks around nearby young stars using infrared integral field spectroscopy and polarimetry. GPI has been in routine operations at Gemini South for the past six years. Because precise astrometry and photometry of exoplanets is critical to GPI's science, we undertook extensive efforts both in-lab and on-sky to refine the astrometric and photometric calibration of the instrument. We describe revisions to the GPI Data Reduction Pipeline (DRP) that account for these revised calibrations, and that fix several issues identified over the previous six years, including some subtle issues affecting astrometric calibrations caused by a drift of the instrument’s clock. These calibrations are critical for the interpretation of observations obtained with GPI, and for a comparison with measurements from other high-contrast imaging instruments

    Surveying Nearby Brown Dwarfs with HGCA: Direct Imaging Discovery of a Faint, High-Mass Brown Dwarf Orbiting HD 176535 A

    Full text link
    Brown dwarfs with well-measured masses, ages and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos-Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately 3.591.15+0.873.59_{-1.15}^{+0.87} Gyrs at a distance of 36.99±0.0336.99 \pm 0.03 pc. In advance of our high-contrast imaging observations, we combined precision HARPS RVs and HGCA astrometry to predict the potential companion's location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the LL' band, which revealed a companion with a contrast of ΔLp=9.20±0.06\Delta L'_p = 9.20\pm0.06 mag at a projected separation of \approx0.\!\!''35 (\approx13 AU) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source MCMC orbit fitting code orvara\tt orvara. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of log(Lbol/L)=5.26±0.06\rm log(L_{bol}/L_{\odot}) = -5.26\pm0.06 and a model-dependent effective temperature of 980±35980 \pm 35 K for HD 176535 B. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/KPIC, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph

    Nanotransfection-based vasculogenic cell reprogramming drives functional recovery in a mouse model of ischemic stroke

    Get PDF
    Ischemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with Etv2, Foxc2, and Fli1 (EFF) to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of EFF-nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with EFF-nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with EFF-nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore