565 research outputs found

    An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor

    Get PDF
    DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics

    Laparoscopic colectomy for colonic neoplasms in a developing country

    Get PDF
    AbstractAimTo report the outcome of patients treated for colonic neoplasms using a laparoscopic assisted technique since its introduction at the University Hospital of the West Indies, Jamaica.Subjects and MethodsAll consecutive patients undergoing laparoscopic assisted colectomy were entered into a prospective database and this data analysed. Data collected included patient demographics, pre-operative diagnosis, operative events, post-operative morbidity and outcome.ResultsOver the thirty-six months period July 1, 2005–December 31, 2005 and July 1, 2006–December 31, 2008, thirty patients each underwent laparoscopic assisted colectomy for a colonic neoplasm. Their mean age was 63 years with M: F ratio of 1:2. Seventy-four per cent of the patients had carcinomas which was located on the right and sigmoid colon in 17 and 10 patients respectively. Mean operative time was 98 min for patients with right-sided lesions and blood loss for the entire group was minimal. Two patients were converted to open resections. Median duration of hospitalization was five days. There was no mortality but three patients had complications. After median follow-up of 30 months, there was no local or systemic recurrence.ConclusionsAppropriately selected patients with colonic neoplasms can be safely subjected to a laparoscopic assisted resection and expect to enjoy the advantages of this technique even in a developing country setting.The outcome of thirty consecutive laparoscopic assisted colectomies is reported demonstrating that this technique can be safely applied to selected patients with colonic carcinomas in developing countries

    Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs

    Get PDF
    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3\u27-CH2-CO-NH-5\u27 amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5\u27-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications

    Scanning X-ray nanodiffraction from ferroelectric domains in strained K0.75Na0.25NbO3 epitaxial films grown on (110) TbScO3

    Get PDF
    Scanning X-ray nanodiffraction on a highly periodic ferroelectric domain pattern of a strained K0.75Na0.25NbO3 epitaxial layer has been performed by using a focused X-ray beam of about 100 14;nm probe size. A 90°-rotated domain variant which is aligned along [1 2]TSO has been found in addition to the predominant domain variant where the domains are aligned along the [12]TSO direction of the underlying (110) TbScO3 (TSO) orthorhombic substrate. Owing to the larger elastic strain energy density, the 90°-rotated domains appear with significantly reduced probability. Furthermore, the 90°-rotated variant shows a larger vertical lattice spacing than the 0°-rotated domain variant. Calculations based on linear elasticity theory substantiate that this difference is caused by the elastic anisotropy of the K0.75Na0.25NbO3 epitaxial layer

    Epiparasitic plants specialized on arbuscular mycorrhizal fungi

    Get PDF
    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature

    Mycorrhizas and biomass crops: opportunities for future sustainable development

    Get PDF
    Central to soil health and plant productivity in natural ecosystems are in situ soil microbial communities, of which mycorrhizal fungi are an integral component, regulating nutrient transfer between plants and the surrounding soil via extensive mycelial networks. Such networks are supported by plant-derived carbon and are likely to be enhanced under coppiced biomass plantations, a forestry practice that has been highlighted recently as a viable means of providing an alternative source of energy to fossil fuels, with potentially favourable consequences for carbon mitigation. Here, we explore ways in which biomass forestry, in conjunction with mycorrhizal fungi, can offer a more holistic approach to addressing several topical environmental issues, including ‘carbon-neutral’ energy, ecologically sustainable land management and CO2 sequestration

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
    • …
    corecore