765 research outputs found

    Cosmological Evolution of Supermassive Black Holes. II. Evidence for Downsizing of Spin Evolution

    Full text link
    The spin is an important but poorly constrained parameter for describing supermassive black holes (SMBHs). Using the continuity equation of SMBH number density, we explicitly obtain the mass-dependent cosmological evolution of the radiative efficiency for accretion, which serves as a proxy for SMBH spin. Our calculations make use of the SMBH mass function of active and inactive galaxies (derived in the first paper of this series), the bolometric luminosity function of active galactic nuclei (AGNs), corrected for the contribution from Compton-thick sources, and the observed Eddington ratio distribution. We find that the radiative efficiency generally increases with increasing black hole mass at high redshifts (z>~1), roughly as \eta \propto M_bh^0.5, while the trend reverses at lower redshifts, such that the highest efficiencies are attained by the lowest mass black holes. Black holes with M_bh>~10^8.5M_sun maintain radiative efficiencies as high as \eta~0.3-0.4 at high redshifts, near the maximum for rapidly spinning systems, but their efficiencies drop dramatically (by an order of magnitude) by z~0. The pattern for lower mass holes is somewhat more complicated but qualitatively similar. Assuming that the standard accretion disk model applies, we suggest that the accretion history of SMBHs and their accompanying spins evolve in two distinct regimes: an early phase of prolonged accretion, plausibly driven by major mergers, during which the black hole spins up, then switching to a period of random, episodic accretion, governed by minor mergers and internal secular processes, during which the hole spins down. The transition epoch depends on mass, mirroring other evidence for "cosmic downsizing" in the AGN population; it occurs at z~2 for high-mass black holes, and somewhat later, at z~1, for lower-mass systems.Comment: To appear in the ApJ, 11 pages and 9 figure

    Prograde and Retrograde Black Holes: Whose Jet is More Powerful?

    Full text link
    The outflow efficiency (eta) from black hole (BH) accretion disc systems is known to depend upon both the BH spin (a) and the amount of large-scale magnetic flux threading the BH and disc. Semi-analytical flux-trapping models suggest retrograde BHs should trap much more large-scale magnetic flux near the BH leading to much higher eta than for prograde BHs. We self-consistently determine the amount of large-scale magnetic flux trapped by rapidly spinning (a = -0.9 and 0.9) BHs using global 3D time-dependent non-radiative general relativistic magnetohydrodynamic simulations of thick (h/r ~ 0.3-0.6) discs. We find that BH-trapped flux builds up until it is strong enough to disrupt the inner accretion disc. Contrary to prior flux-trapping models, which do not include the back-reaction of magnetic flux on the disc, our simulations show prograde BHs trap more magnetic flux, leading to about 3 times higher eta than retrograde BHs for |a| = 0.9. Both spin orientations can produce highly efficient jets, eta ~ 100%, with increasing eta for increasing disc thickness. The similarity of eta for prograde and retrograde BHs makes it challenging to infer the sign of BH spin based on jet energetics alone.Comment: 5 pages, 3 figures. Accepted to MNRAS. For associated movies see http://youtu.be/yNZLjsrz0Wo and http://youtu.be/bQE69wti3a

    Electrodeposited lead dioxide coatings

    No full text
    Lead dioxide coatings on inert substrates such as titanium and carbon now offer new opportunities for a material known for 150 years. It is now recognised that electrodeposition allows the preparation of stable coatings with different phase structures and a wide range of surface morphologies. In addition, substantial modification to the physical properties and catalytic activities of the coatings are possible through doping and the fabrication of nanostructured deposits or composites. In addition to applications as a cheap anode material in electrochemical technology, lead dioxide coatings provide unique possibilities for probing the dependence of catalytic activity on layer composition and structure (critical review, 256 references)

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    Channeled polymeric scaffolds with polypeptide gel filling for lengthwise guidance of neural cells

    Full text link
    CNS damages are often irreversible since neurons of the central nervous system are unable to regenerate after an injury. As a new strategy within the nervous system tissue engineering, multifunctional systems based on two different biomaterials to support axonal guidance in damaged connective tracts have been developed herein. These systems are composed of a channeled scaffold made of ethyl acrylate and hydroxyethyl acrylate copolymer, P(EA-co-HEA), with parallel tubular micropores, combined with an injectable and in situ gelable self-assembling polypeptide (RAD16-I) as pores filler. The polymer scaffold is intended to provide a three-dimensional context for axon growth; subsequently, its morphology and physicochemical parameters have been determined by scanning electron microscopy, density measurements and compression tests. Besides, the hydrogel acts as a cell-friendly nanoenvironment while it creates a gradient of bioactive molecules (nerve growth factor, NGF) along the scaffolds channels; the chemotactic effect of NGF has been evaluated by a quantitative ELISA assay. These multifunctional systems have shown ability to keep circulating NGF, as well as proper short-term in vitro biological response with glial cells and neural progenitors.The authors acknowledge funding through the Spanish Ministerio de Ciencia e Innovacion (MAT2011-28791-C03-02 and -03). Dr. J.M. Garcia Verdugo (Department of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutive Biology, Universitat de Valencia) is thanked for kindly providing the cells employed in this work.Conejero García, Á.; Vilarino-Feltrer, G.; Martínez Ramos, C.; Monleón Pradas, M.; Vallés Lluch, A. (2015). Channeled polymeric scaffolds with polypeptide gel filling for lengthwise guidance of neural cells. European Polymer Journal. 70:331-341. doi:10.1016/j.eurpolymj.2015.07.033S3313417

    FCNC Top Quark Decays in Extra Dimensions

    Full text link
    The flavor changing neutral top quark decay t -> c X is computed, where X is a neutral standard model particle, in a extended model with a single extra dimension. The cases for the photon, X= \gamma,andaStandardModelHiggsboson,X=H,areanalyzedindetailinanonlinear, and a Standard Model Higgs boson, X = H, are analyzed in detail in a non-linearR_\xi gauge. We find that the branching ratios can be enhanced by the dynamics originated in the extra dimension. In the limit where 1/R >> ->, we have found Br(t -> c \gamma) \simeq 10^{-10} for 1/R = 0.5 TeV. For the decay t -> c H, we have found Br(t -> cH) \simeq 10^{-10} for a low Higgs mass value. The branching ratios go to zero when 1/R -> \infty.Comment: Accepted to be published in the Europ. Phys. Jour. C; 16 pages, 2 figure

    Modification of Amberlite IRA 400 (CL- ) by incorporating Alizarin S and Sodium Morpholyldithiocarbamate (Mordtc) repectively

    Get PDF
    A chelating sorbent was obtained by incorporating Alizarin S and Sodium Morpholyldithiocarbamate (MorDTC) respectively in Amberlite IRA 400 (Cl). Structural characteristics were studied by X-Ray Powder Diffraction (XRD), Optical Microscopy (OM), Differential Scanning Calorimetry (DSC) and Adsorption Techniques. The pH of optimal retention pH of MorDTC in Amberlite IRA 400 (Cl-)was obtained (pH 8-9). For Alizarin S an optimal retention is achieved even at pH 1-2. The sorption capacity of the resin without modification is 0.575 mmol g-
    corecore