1,983 research outputs found

    Single-cell-led drug repurposing for Alzheimer's disease

    Get PDF
    : Alzheimer's disease is the most common form of dementia. Notwithstanding the huge investments in drug development, only one disease-modifying treatment has been recently approved. Here we present a single-cell-led systems biology pipeline for the identification of drug repurposing candidates. Using single-cell RNA sequencing data of brain tissues from patients with Alzheimer's disease, genome-wide association study results, and multiple gene annotation resources, we built a multi-cellular Alzheimer's disease molecular network that we leveraged for gaining cell-specific insights into Alzheimer's disease pathophysiology and for the identification of drug repurposing candidates. Our computational approach pointed out 54 candidate drugs, mainly targeting MAPK and IGF1R signaling pathways, which could be further evaluated for their potential as Alzheimer's disease therapy

    Extracellular vesicles from mesenchymal stem cells: towards novel therapeutic strategies for neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases are fatal disorders of the central nervous system (CNS) which currently lack effective treatments. The application of mesenchymal stem cells (MSCs) represents a new promising approach for treating these incurable disorders. Growing evidence suggest that the therapeutic effects of MSCs are due to the secretion of neurotrophic molecules through extracellular vesicles. The extracellular vesicles produced by MSCs (MSC-EVs) have valuable innate properties deriving from parental cells and could be exploited as cell-free treatments for many neurological diseases. In particular, thanks to their small size, they are able to overcome biological barriers and reach lesion sites inside the CNS. They have a considerable pharmacokinetic and safety profile, avoiding the critical issues related to the fate of cells following transplantation. This review discusses the therapeutic potential of MSC-EVs in the treatment of neurodegenerative diseases, focusing on the strategies to further enhance their beneficial effects such as tracking methods, bioengineering applications, with particular attention to intranasal delivery as a feasible strategy to deliver MSC-EVs directly to the CNS in an effective and minimally invasive way. Current progresses and limiting issues to the extent of the use of MSC-EVs treatment for human neurodegenerative diseases will be also revised

    ASC-exosomes ameliorate the disease progression in SOD1(G93A) murine model underlining their potential therapeutic use in human ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motoneurons. To date, there is no effective treatment available. Exosomes are extracellular vesicles that play important roles in intercellular communication, recapitulating the effect of origin cells. In this study, we tested the potential neuroprotective effect of exosomes isolated from adipose-derived stem cells (ASC-exosomes) on the in vivo model most widely used to study ALS, the human SOD1 gene with a G93A mutation (SOD1(G93A)) mouse. Moreover, we compared the effect of two different routes of exosomes administration, intravenous and intranasal. The effect of exosomes administration on disease progression was monitored by motor tests and analysis of lumbar motoneurons and glial cells, neuromuscular junction, and muscle. Our results demonstrated that repeated administration of ASC-exosomes improved the motor performance; protected lumbar motoneurons, the neuromuscular junction, and muscle; and decreased the glial cells activation in treated SOD1(G93A) mice. Moreover, exosomes have the ability to home to lesioned ALS regions of the animal brain. These data contribute by providing additional knowledge for the promising use of ASC-exosomes as a therapy in human ALS

    Functional characterization of a CDKN1B mutation in a Sardinian kindred with multiple endocrine neoplasia type 4 (MEN4)

    Get PDF
    Inactivating germline mutations of the CDKN1B gene, encoding for the nuclear cyclin-dependent kinase inhibitor p27kip1 protein, have been reported in patients with multiple endocrine neoplasia type 4 (MEN4), a MEN1-like phenotype without MEN1 mutations. The aim of this study was to in vitro characterize the germline CDKN1B mutation c.374_375delCT (S125X) we detected in a patient with MEN4. The proband was affected by multiglandular primary hyperparathyroidism and gastro-entero-pancreatic tumors. We carried out subcellular localization experiments transfecting into eukaryotic HeLa and GH3 cell lines plasmid vectors expressing the CDKN1B wild type (wt) or mutant cDNA. Western blot studies showed that fusion proteins were expressed at equal levels. The mutated protein was shorter compared to the wt protein and lacked the highly conserved C-terminal domain, which includes the bipartite nuclear localization signal at amino acids 152/153 and 166/168. In HeLa and GH3 cells wt p27 localized in the nucleus whereas the p27_S125X protein was retained in the cytoplasm predicting the loss of tumor suppressive function. The proband's tumoral parathyroid tissue did not show allelic loss, since wt and mutant alleles were both present by sequencing the somatic DNA. Immunohistochemistry showed a complete loss of nuclear p27 expression in the parathyroid adenoma removed by the patient at the second surgery. In conclusion, our study confirms the pathogenic role of the c.374_375delCT CDKN1B germline mutation in a patient with MEN4

    Mutational and large deletion study of genes implicated in hereditary forms of primary hyperparathyroidism and correlation with clinical features

    Get PDF
    The aim of this study was to carry out genetic screening of the MEN1, CDKN1B and AIP genes, both by direct sequencing of the coding region and multiplex ligation-dependent probe amplification (MLPA) assay in the largest monocentric series of Italian patients with Multiple Endocrine Neoplasia type 1 syndrome (MEN1) and Familial Isolated Hyperparathyroidism (FIHP). The study also aimed to describe and compare the clinical features of MEN1 mutation-negative and mutation-positive patients during long-term follow-up and to correlate the specific types and locations of MEN1 gene mutations with onset and aggressiveness of the main MEN1 manifestations. A total of 69 index cases followed at the Endocrinology Unit in Pisa over a period of 19 years, including 54 MEN1 and 15 FIHP kindreds were enrolled. Seven index cases with MEN1 but MEN1 mutation-negative, followed at the University Hospital of Cagliari, were also investigated. FIHP were also tested for CDC73 and CaSR gene alterations. MEN1 germline mutations were identified in 90% of the index cases of familial MEN1 (F-MEN1) and in 23% of sporadic cases (S-MEN1). MEN1 and CDC73 mutations accounted for 13% and 7% of the FIHP cohort, respectively. A CDKN1B mutation was identified in one F-MEN1. Two AIP variants of unknown significance were detected in two MEN1-negative S-MEN1. A MEN1 positive test best predicted the onset of all three major MEN1-related manifestations or parathyroid and gastro-entero-pancreatic tumors during follow-up. A comparison between the clinical characteristics of F and S-MEN1 showed a higher prevalence of a single parathyroid disease and pituitary tumors in sporadic compared to familial MEN1 patients. No significant correlation was found between the type and location of MEN1 mutations and the clinical phenotype. Since all MEN1 mutation-positive sporadic patients had a phenotype resembling that of familial MEN1 (multiglandular parathyroid hyperplasia, a prevalence of gastro-entero-pancreatic tumors and/or the classic triad) we might hypothesize that a subset of the sporadic MEN1 mutation-negative patients could represent an incidental coexistence of sporadic primary hyperparathyroidism and pituitary tumors or a MEN1 phenocopy, in our cohort, as in most cases described in the literature

    Baghera Assessment Project, designing an hybrid and emergent educational society

    Get PDF
    Edited by Sophie Soury-Lavergne ; Available at: http://www-leibniz.imag.fr/LesCahiers/2003/Cahier81/BAP_CahiersLaboLeibniz.PDFResearch reportThe Baghera Assessment Project (BAP) has the objective to ex plore a new avenue for the design of e-Learning environments. The key features of BAP's approach are: (i) the concept of emergence in multi-agents systems as modelling framework, (ii) the shaping of a new theoretic al framework for modelling student knowledge, namely the cK¢ model. This new model has been constructed, based on the current research in cognitive science and education, to bridge research on education and research on the design of learning environments

    The Matter of Future Heritage

    Get PDF
    In 2018, for the first time, the University of Bologna’s Board of PhD in Architecture and Design Culture assigned second-year PhD students the task of developing and managing an international conference and publishing its works. The organisers of the first edition of this initiative – Giacomo Corda, Pamela Lama, Viviana Lorenzo, Sara Maldina, Lia Marchi, Martina Massari and Giulia Custodi – have chosen to leverage the solid relationship between the Department of Architecture and the Municipality of Bologna to publish a call having to do with the European Year of Cultural Heritage 2018, in which the Municipality was involved. The theme chosen for the call, The Matter of Future Heritage, set itself the ambitious goal of questioning the future of a field of research – Cultural Heritage (CH) – that is constantly being  redefined. A work that was made particularly complex in Europe by the development of the H2020 programme, where the topic entered, surprisingly, not as a protagonist but rather as an articulation of other subjects that in the vision of the programme seemed evidently more urgent and, one might say, dominant. The resulting tensions have been considerable and with both negative and positive implications, all the more evident if we refer to the issues that are closest to us namely the city and the landscape

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore