340 research outputs found

    Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques

    Get PDF
    AbstractWe analyzed an amino-terminal modification of β-amyloid (Aβ) peptide in brain, using anti-Aβ antibodies that distinguish distinct molecular species. Examination of cortical sections from 28 aged individuals with a wide range in senile plaque density revealed that a molecular species distinct from the standard Aβ is deposited in the brain in a dominant and differential manner. This modified Aβ peptide (AβN3(pE)) starts at the 3rd amino-terminal residue of the standard Aβ, glutamate, converted to pyroglutamate through intramolecular dehydration. Because plaques composed of AβN3(pE) are present in equivalent or greater densities than those composed of standard Aβ bearing the first aminoterminal residue (AβN1) and because deposition of the former species appears to precede deposition of the latter, as confirmed with specimens from Down's syndrome patients, the processes involved in AβN3(pE) production and retention may play an early and critical role in senile plaque formation

    Raman spectroscopy to diagnose Alzheimer’s disease and dementia with Lewy bodies in blood

    Get PDF
    Accurate identification of Alzheimer’s disease (AD) is still of major clinical importance considering the current lack of non-invasive and low-cost diagnostic approaches. Detection of early-stage AD is particularly desirable as it would allow early intervention and/or recruitment of patients into clinical trials. There is also an unmet need for discrimination of AD from dementia with Lewy bodies (DLB), as many cases of the latter are misdiagnosed as AD. Biomarkers based on a simple blood test would be useful in research and clinical practice. Raman spectroscopy has been implemented to analyse blood plasma of a cohort that consisted of early-stage AD, late-stage AD, DLB and healthy controls. Classification algorithms achieved high accuracy for the different groups: early-stage AD vs healthy with 84% sensitivity, 86% specificity; late-stage AD vs healthy with 84% sensitivity, 77% specificity; DLB vs healthy with 83% sensitivity, 87% specificity; early-stage AD vs DLB with 81% sensitivity, 88% specificity; late-stage AD vs DLB with 90% sensitivity, 93% specificity; and lastly, early-stage AD vs late-stage AD 66% sensitivity and 83% specificity. G-score values were also estimated between 74-91%, demonstrating that the overall performance of the classification model was satisfactory. The wavenumbers responsible for differentiation were assigned to important biomolecules which can serve as a panel of biomarkers. These results suggest a cost-effective, blood-based biomarker for neurodegeneration in dementias

    Evaluation of \u3csup\u3e18\u3c/sup\u3eF-IAM6067 as a sigma-1 receptor PET tracer for neurodegeneration in vivo in rodents and in human tissue

    Get PDF
    © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. The sigma 1 receptor (S1R) is widely expressed in the CNS and is mainly located on the endoplasmic reticulum. The S1R is involved in the regulation of many neurotransmission systems and, indirectly, in neurodegenerative diseases. The S1R may therefore represent an interesting neuronal biomarker in neurodegenerative diseases such as Parkinson\u27s (PD) or Alzheimer\u27s diseases (AD). Here we present the characterisation of the S1R-specific 18F-labelled tracer 18F-IAM6067 in two animal models and in human brain tissue. Methods: Wistar rats were used for PET-CT imaging (60 min dynamic acquisition) and metabolite analysis (1, 2, 5, 10, 20, 60 min post-injection). To verify in vivo selectivity, haloperidol, BD1047 (S1R ligand), CM398 (S2R ligand) and SB206553 (5HT2B/C antagonist) were administrated for pre-saturation studies. Excitotoxic lesions induced by intra-striatal injection of AMPA were also imaged by 18F-IAM6067 PET-CT to test the sensitivity of the methods in a well-established model of neuronal loss. Tracer brain uptake was also verified by autoradiography in rats and in a mouse model of PD (intrastriatal 6-hydroxydopamine (6-OHDA) unilateral lesion). Finally, human cortical binding was investigated by autoradiography in three groups of subjects (control subjects with Braak ≤2, and AD patients, Braak \u3e2 & ≤4 and Braak \u3e4 stages). Results: We demonstrate that despite rapid peripheral metabolism of 18F-IAM6067, radiolabelled metabolites were hardly detected in brain samples. Brain uptake of 18F-IAM6067 showed differences in S1R anatomical distribution, namely from high to low uptake: pons-raphe, thalamus medio-dorsal, substantia nigra, hypothalamus, cerebellum, cortical areas and striatum. Pre-saturation studies showed 79-90% blockade of the binding in all areas of the brain indicated above except with the 5HT2B/C antagonist SB206553 and S2R ligand CM398 which induced no significant blockade, indicating good specificity of 18F-IAM6067 for S1Rs. No difference between ipsi- and contralateral sides of the brain in the mouse model of PD was detected. AMPA lesion induced a significant 69% decrease in 18F-IAM6067 uptake in the globus pallidus matching the neuronal loss as measured by NeuN, but only a trend to decrease (-16%) in the caudate putamen despite a significant 91% decrease in neuronal count. Moreover, no difference in the human cortical binding was shown between AD groups and controls. Conclusion: This work shows that 18F-IAM6067 is a specific and selective S1R radiotracer. The absence or small changes in S1R detected here in animal models and human tissue warrants further investigations and suggests that S1R might not be the anticipated ideal biomarker for neuronal loss in neurodegenerative diseases such as AD and PD

    Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies

    Full text link
    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focussing on the particular example of the classically recollapsing Bianchi IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasi-classical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic "J d\Sigma" rule of quantum cosmology, as well as a generalization of this rule to generic initial states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout. Physics unchanged. To appear in Phys. Rev.

    Flavor changing Z-decays from scalar interactions at a Giga-Z Linear Collider

    Full text link
    The flavor changing decay Z -> d_I \bar{d}_J is investigated with special emphasis on the b \bar{s} final state. Various models for flavor violation are considered: two Higgs doublet models (2HDM's), supersymmetry (SUSY) with flavor violation in the up and down-type squark mass matrices and SUSY with flavor violation mediated by R-parity-violating interaction. We find that, within the SUSY scenarios for flavor violation, the branching ratio for the decay Z -> b \bar{s} can reach 10^{-6} for large \tan\beta values, while the typical size for this branching ratio in the 2HDM's considered is about two orders of magnitudes smaller at best. Thus, flavor changing SUSY signatures in radiative Z decays such as Z -> b \bar{s} may be accessible to future ``Z factories'' such as a Giga-Z version of the TESLA design.Comment: 27 pages, 15 figures, REVTeX4. A new section added and a few minor corrections were made in the tex

    Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy

    Get PDF
    Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients’ primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model
    corecore