1,177 research outputs found
Liberation Textualities: Decoloniality, Feminism, and Aesthetics in Anglophone Caribbean and Indigenous North American Resistance Literature
Liberation Textualities recognizes the connections between personal, emotional, and spiritual writing by Anglophone Caribbean and Indigenous North American women and an expanded framework of resistance literature. I argue that resistance itself is in fact a broad tradition within which many texts, representations, and ideas intersect. While this project is sensitive to the profound historical, socioeconomic, and cultural differences that shape the realities of various communities in the Americas, it also recognizes a shared decolonizing impulse and a common interest in interior and domestic life, nurtured by similar gendered and racialized experiences in settler, colonial, and neocolonial societies. This dissertation argues that decolonial, feminist, and aesthetic practices, while still overlooked in most canons of resistance literature, provide the grounds upon which to revitalize and expand our understanding of what constitutes resistance and offer representation to the extensive range of unexpected and unsung resistant textualities.
The study focuses on novels by Merle Collins and Lee Maracle, poems by Chrystos and Mahadai Das, and plays by M. NourbeSe Philip and Yvette Nolan. The Colour of Forgetting (1996) is read alongside Celias Song (2014) through the lens of spiritual resistance and marvellous realism. Not Vanishing (1988) and A Leaf in His Hear (2010) are analyzed for their representations of the body as a site of resistance. Lastly, Coups and Calypsos (2001) and Annie Maes Movement (1998) are examined for their focus on personal relationships and the dynamic interplay of resistance between individuals. This study looks at how different literary forms shift polemic and dominant understandings of resistance theory, whilst underscoring literary diversity as a principle value of resistance literature. The theoretical structure of the dissertation engages with foundational thinkers in resistance literature theoryBarbara Harlow, Frantz Fanon, and Selwyn Cudjoebut complicates, updates, and deconstructs their contributions through multiple resistance theorists, including Emma LaRocque, Leanne Simpson, and Carole Boyce Davies. These women have challenged patriarchal nationalism within Caribbean and Indigenous North American political movements and societies, but their philosophical work extends to how literary critics engage with the idea of resistance and assign value to a text.
These women, this dissertation asserts, redraw the boundaries of political and aesthetic engagement in literary studies, offering an important and revolutionary new path toward a comprehensive and pluriversal resistance literature that transcends a single movement, moment, or place
Demystifying academics to enhance university-business collaborations in environmental science
In countries globally there is intense political interest in fostering effective university-business collaborations, but there has been scant attention devoted to exactly how an individual scientist's workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to this. To investigate this an original, empirical dataset is derived from UK job specifications and promotion criteria, which distil universities' varied drivers into requirements upon academics. This work reveals the nature of the severe challenge posed by a heavily time-constrained culture; specifically, tension exists between opportunities presented by working with business and non-optional duties (e.g. administration and teaching). Thus, to justify the time to work with business, such work must inspire curiosity and facilitate future novel science in order to mitigate its conflict with the overriding imperative for academics to publish. It must also provide evidence of real-world changes (i.e. impact), and ideally other reportable outcomes (e.g. official status as a business' advisor), to feed back into the scientist's performance appraisals. Indicatively, amid 20-50 key duties, typical full-time scientists may be able to free up to 0.5 day per week for work with business. Thus specific, pragmatic actions, including short-term and time-efficient steps, are proposed in a "user guide"to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance sector. These actions are mapped back to a tailored typology of impact and a newly created representative set of appraisal criteria to explain how they may be effective, mutually beneficial and overcome barriers. Throughout, the focus is on environmental science, with illustrative detail provided through the example of natural hazard risk modelling in the insurance sector. However, a new conceptual model of academics' behaviour is developed, fusing perspectives from literature on academics' motivations and performance assessment, which we propose is internationally applicable and transferable between sectors. Sector-specific details (e.g. list of relevant impacts and user guide) may serve as templates for how people may act differently to work more effectively together
Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis
Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa.
Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable
differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous
reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase
Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted
protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial
(Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of
host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These
genome data provide a foundation for research into trypanosomiasis prevention and yield important
insights with broad implications for multiple aspects of tsetse biology.IS
Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.
BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario
Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett's esophagus.
BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 × 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 × 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 × 10(-9)). CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response
Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology
Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease
The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease
Physiological Correlates of Volunteering
We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation
- …