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Summary
Background Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus 
medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and 
testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for 
future screening guidelines.

Methods In this international, multicentre study, we analysed patients with medulloblastoma from retrospective 
cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics 
International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies 
(SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and 
tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA 
methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 
(MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant 
burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously 
defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, 
a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 
and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and 
overall survival were modelled for patients with a genetic predisposition to medulloblastoma.

Findings We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the 
four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for 
germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these 
against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as 
consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that 
germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of 
genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients 
in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical 
cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in 
the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of 
seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU 
and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the 
MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. 
Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups 
and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients 
with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40–69) and 
5-year overall survival was 65% (95% CI 52–81); these survival estimates differed significantly across patients with 
germline mutations in different medulloblastoma predisposition genes.
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Introduction
Medulloblastoma is an embryonal brain tumour of the 
cerebellum, with an annual age-adjusted incidence 
ranging from 2·0 cases per 1 000 000 to 5·8 cases per 
1 000 000 worldwide.1 The cause of medulloblastoma is 
largely unclear and most cases are presumed to arise 
sporadically.2 Medulloblastoma has been observed in 
conjunction with several rare disorders, including Gorlin 
syndrome (associated with mutations in SUFU and 
PTCH1),3,4 Li-Fraumeni syndrome (TP53),5 APC-associated 
polyposis conditions,6 and Fanconi anaemia (BRCA2).7 
However, the full spectrum and prevalence of genetic 
predisposition involving damaging germline mutations in 
paediatric-onset and adult-onset cancer predisposition 
genes8 remains unknown. Following the recognition9 of 
four consensus molecular subgroups (WNT [MBWNT], 
SHH [MBSHH], group 3 [MBGroup3], and group 4 [MBGroup4]) 
with distinct demographics and clinical outcomes,10 
patients with germline TP53, SUFU, and PTCH1 
mutations have been reported to be predisposed to develop 
MBSHH.11,12 Although several case studies have reported 
medulloblastomas arising in patients with Fanconi 
anaemia, whether these predispose to specific 
medulloblastoma subgroups, and whether heterozygous 
germline mutations13 also confer an increased risk 
of developing medulloblastoma, remain unknown. 
Furthermore, whether and to what extent the presence of 
predisposing germline mutations affects clinical outcome 
is unclear. A comprehensive study14 of damaging germline 
mutations in cancer predisposition genes across a diverse 
set of paediatric cancers identified variants likely to 
predispose to the disease in three (8%) of 37 patients with 
medulloblastoma—a cohort size that is too small to allow 

these issues to be thoroughly addressed. Owing to these 
uncertainties, and since knowledge about germline 
mutations can be useful for clinical practice,8 assessment 
of larger patient series is crucial for the identification of 
consensus medulloblastoma predisposition genes to 
estimate the contribution of genetic predisposition 
towards consensus molecular subgroups, and to 
investigate whether affected patients have distinct clinical 
outcomes. A comprehensive understanding of molecular 
alterations in affected patients would further help in the 
development of clinical screening guidelines for genetic 
risk assessment in paediatric patients.

In this study, we provide a comprehensive description 
of genetic risk factors across 1022 patients with medullo
blastoma based on a retrospective discovery cohort and 
validation in a prospective clinical cohort. We validated 
a set of six consensus medulloblastoma predisposition 
genes, and report associations between germline muta
tions and patient characteristics, molecular subgroups, 
somatic mutation landscapes, and clinical outcomes.

Methods
Study design and participants
This series was based on 1022 patients with medullo
blastoma (491 published12,15–18 and 531 as yet unpublished 
cases), and comprised whole-genome and whole-exome 
sequencing data for the whole set of donor samples 
available to use from the International Cancer Genome 
Consortium (ICGC), the Medulloblastoma Advanced 
Genomics International Consortium (MAGIC), and 
the CEFALO series,19 and from four prospective 
clinical studies (SJMB03 [NCT00085202], SJMB12 
[NCT01878617], SJYC07 [NCT00602667], and I-HIT-MED 

Interpretation Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT 
and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer 
predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on 
clinical and molecular tumour characteristics. 
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[NCT02417324]). We obtained biological samples from 
all patients, who all provided written informed consent, 
in accordance with institutional review board guidelines.

Patient accrual for our retrospective cohort was done 
from 2003 until 2016. Patient accrual for the SJMB03 trial 
was done from Sept 9, 2003, until March 7, 2013 and for 
the SJYC07 trial was done from Dec 17, 2007, until 
March 31, 2017. The SJMB12 and I-HIT-MED trials are 
still accruing. The age limit for eligibility in the 
prospective studies was 5 years or younger (SJYC07), 
3–21 years (SJMB03), and 3–39 years (SJMB12). Patients 
of all ages were eligible for the I-HIT-MED study. The 
retrospective cohort had no age limit for inclusion. 
Patients in the I-HIT-MED study were excluded if they 
were registered in another clinical trial for the same 
diagnosis (relapse is defined as a second diagnosis) or if 
a valid ethical committee approval was lacking.

Procedures
Whole-genome and whole-exome sequencing data for 
germline and tumour samples were generated at the 

German Cancer Research Centre (ICGC PedBrain; 
Heidelberg, Germany), Canada’s Michael Smith Genome 
Sciences Centre (MAGIC; Vancouver, BC, Canada), 
Broad Institute of Massachusetts Institute of Technology 
and Harvard (Cambridge, MA, USA), and St Jude 
Children’s Research Hospital (Pediatric Cancer Genome 
Project; Memphis, TN, USA).

To ensure standardisation of genomic data processing, 
we used the same uniform computational analysis 
workflows for all germline and tumour samples. We first 
unaligned samples that were provided to us as genomic 
alignment format (BAM) files. Subsequently, we aligned 
all samples using the same set of algorithms and the same 
human reference genome build (GRCH37, also known as 
hg19), based on data-processing standards defined by the 
Pan-Cancer Analysis of Whole Genomes (PCAWG) project.

For germline variant discovery, we used freebayes 
(version 1.1.0) in single-sample and paired-sample calling 
modes for discovery of single-nucleotide variants (SNVs), 
multiple nucleotide variants (MNVs), and insertions or 
deletions (indels) smaller than 50 base-pairs (bp; used 

Research in context

Evidence before this study
We searched PubMed for journal articles and case reports from 
Aug 1, 1925, up to Dec 31, 2017, with the terms 
“medulloblastoma” and “germline OR familial OR syndrome OR 
heritable OR susceptibility”, and the names of 110 genes in which 
germline mutations confer increased risk of paediatric and adult 
cancers. About 100 studies identified damaging germline 
mutations in nearly 20 genes, primarily in APC, BRCA2, PTCH1, 
SUFU, and TP53. Several studies were based on case reports and 
small-scale series. Additionally, which patients would benefit 
from genetic counselling in the context of molecular 
subgrouping—nowadays routinely applied in clinical trials and 
implemented into the revised WHO classification of CNS 
tumours in 2016—and whether genetic predisposition can be 
recognised based on familial patterns were unclear. Additionally, 
several paediatric cancer centres have implemented routine 
multigene panel analysis and whole-exome analysis of 
medulloblastomas; however, these centres encounter several 
germline mutations with uncertain clinical significance. No study 
has previously aimed to define a consensus set of 
medulloblastoma predisposition genes or has investigated under 
which circumstances genetic counselling and testing should be 
offered to patients with medulloblastoma.

Added value of this study
This study is based on an international cohort of 1022 patients 
with medulloblastoma, and includes detailed information about 
medulloblastoma subgroups (WNT [MBWNT], SHH [MBSHH], 
group 3 [MBGroup3], and group 4 [MBGroup4]), somatic mutation 
landscapes, and clinical outcomes. We defined and characterised 
six consensus, clinically relevant medulloblastoma predisposition 
genes on the basis of rare variant burden analysis (APC, BRCA2, 

PALB2, PTCH1, SUFU, and TP53). Half of all patients with 
damaging germline mutations were not recognised based on 
familial history of cancer; however, these patients exhibited 
distinct phenotypes with respect to age at diagnosis, molecular 
subgroups, somatic mutation patterns, and clinical outcomes. 
Paediatric patients with heterozygous germline PALB2 
mutations exhibited mutational signatures consistent with 
homologous recombination repair deficiency and all patients 
with medulloblastoma showed no signs characteristic of Fanconi 
anaemia. About one in five patients in the MBSHH subgroup 
developed medulloblastoma in the context of a genetic 
predisposition, underscoring the need for a dedicated genetic 
screening programme and surveillance programme in this 
patient group. Patients in the MBWNT subgroup had an 
intermediate risk of damaging germline mutations, and clear 
genotype–phenotype associations that guide the ordering of 
genetic tests. Damaging germline mutations in known cancer 
predisposition genes were rare in paediatric patients in the 
MBGroup3 and MBGroup4 subgroups, which indicates conservative 
ordering of genetic tests in these groups. We propose clinical 
guidelines for genetic screening in medulloblastoma based on 
routinely acquired clinical and molecular tumour phenotypes.

Implications of all the available evidence
A significant prevalence of clinically important germline 
mutations in two of four molecular subgroups reveals that 
genetic counselling and testing should be established as a 
standard-of-care procedure in the management of patients with 
medulloblastoma. The proposed testing algorithm has been 
implemented in the International Society of Paediatric Oncology 
clinical trial PNET 5 MB (NCT02066220), which is currently 
recruiting patients.
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parameters were --min-repeat-entropy 1, --report-genotype-
likelihood-max, --alternate-fraction 0·2, and --no-partial-
observations). Raw variant predictions were further 
filtered for quality (QUAL >20, QUAL/AO >2; where 
QUAL is −10 log10 Pr[alternative allele is wrong], and AO is 
alternative allele observation count), strand bias artifacts 
(SAF >1, SAR >1; where SAF is the number of alternate 
observations on the forward strand, and SAR is number of 
alternate observations on the reverse strand), read position 
artifacts (RPR >1, RPL >1; where RPR is the number of 
reads supporting the alternate balanced to the right [3ʹ] of 
the alternate allele, and RPL is the number of reads 
supporting the alternate balanced to the left [5ʹ] of the 
alternate allele), and normalised for consistent re
presentation across patients with the variant analysis 
software vt (version 0.5). We used delly for germline 
genomic structural variant discovery with default settings 
for whole-genome sequencing samples and a custom 
read-depth-based copy-number variation (CNV)-calling 
pipeline for whole-exome sequencing samples. We based 
this custom pipeline on read quantification by bedtools in 
exome capture regions (MAQ >30), followed by variance 
stabilising transformation of count data with the vst 
function from the DESeq2 R package (version 1.8.2), 
unsupervised estimation of hidden confounders using the 
R package PEER (30 hidden confounders), and copy-
number segmentation based on standardised residuals 
using circular binary segmentation (R package DNAcopy, 
version 1.50, default settings). Raw CNV calls were filtered 
further for size (to include only those >10 kb), minimum 
number of exons (>2), and CNV signal intensity (>4 SDs). 
Mosaic mutation discovery was based on freebayes and for 
donors with paired blood and tumour sequencing data. 
Any SNV, short indel, and MNV that was observed at low 
variant allele frequency in blood (3–15%) and high variant 
allele frequency in tumours (>50%) was considered a 
putative mosaic mutation. We restricted the analysis to 
reads with mapping quality of more than 30 (−10 log10 
Pr[mapping position is wrong]), base quality of more than 
20 (−10 log10 Pr[mapping position is wrong]), and sites 
with more than 30 times sequencing coverage (ie, number 
of reads). We made no assumptions regarding the 
pathogenicity of putative mosaic mutations. We excluded 
any variant that was present in public genetic archives and 
discovered in germline genomes of other patients with 
medulloblastoma.

For classification of damaging germline mutations, 
germline variants were annotated with the Ensembl 
Variant Effect Predictor (VEP; r81). High-impact (ie, 
damaging) germline mutations were defined as 
frameshift, stop gain, start lost, canonical splice site, 
exon or gene deletions, known (ClinVar; accessed 
Feb 16, 2017) damaging non-canonical splice site variants, 
and somatic mosaic mutations (defined as mutations 
present in a subset of normal cells). Putative damaging 
germline mutations were removed if the estimated 
minor allele frequency in at least one continental 

population was more than 0·1%, which we judged on the 
basis of 53 105 sequenced individuals that were assigned 
to known (control) populations and without a cancer 
diagnosis from the Exome Aggregation Consortium 
(ExAC) resource, the 1000 Genomes Project, and the 
National Heart, Lung, and Blood Institute GO Exome 
Sequencing Project. Putative gain-of-function missense 
variants in TP53 were further evaluated by use of 
information in the International Agency for Research on 
Cancer TP53 database and annotated as pathogenic if 
TP53 mutations were classified as non-functional in 
experimental transcriptional activity assays. Finally, all 
germline mutations were excluded from the analysis if 
annotated as (likely) benign in ClinVar. Damaging 
germline structural variants were defined if they 
overlapped at least one exon and were absent in samples 
from the 1000 Genomes Project. We estimated the 
primary population ancestry (European, African, east 
Asian, south Asian, and Native American) for all patients 
with medulloblastoma with a supervised decomposition 
approach20 and ancestry-informative markers that are 
within ExAC-defined exome capture target regions.

Identification of somatic mutations (SNVs, small 
indels, and copy-number alterations) was pursued in a 
standardised manner across all samples (matched 
tumour or normal genome as well as exome pairs) with 
the German Cancer Research Center (known as DKFZ) 
and European Molecular Biology Laboratory cancer 
genome analysis workflow of the PCAWG consortium. 
Somatic SNVs and indels were further stringently filtered 
for germline contamination using information from 
dbSNP and the 1000 Genomes Project. Somatic structural 
variant discovery was pursued in a standardised way by 
use of an optimised version of delly. We used a high-
stringency structural variant set by additionally filtering 
somatic structural variants detected in at least 1% of a set 
of 1105 germline samples from healthy individuals 
belonging to phase 1 of the 1000 Genomes Project, and 
by requiring absence of somatic structural variants in all 
medulloblastoma germline samples of this study. For 
inference of high-stringency structural variants, we 
additionally required at least four supporting read pairs21 
with a minimum mapping quality of 20 (−10 log10 
Pr[mapping position is wrong]) and restricted valid 
somatic structural variant sizes from 100 bp to 500 Mb.

We quantified previously defined somatic mutational 
signatures22 (termed 1, 3, 5, and 8) using tumour-specific 
somatic point-mutation spectra and published signature 
probabilities. These signatures comprise combinations 
of somatic mutations and represent consequences of 
mutagenic exposures and defective DNA repair pathways. 
Signatures 1 and 5 (“clock-like” signatures) are associated 
with ageing (a clock-like accumulation of mutations) and 
occur in normal, non-malignant cells,22 whereas 
signatures 3 and 8 are associated with homologous 
recombination repair deficiency (HRD) and have been 
reported in cancer tissues. We used these mutational 
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signatures to further classify medulloblastoma genomes 
into two groups, a clock-like group (signatures 1 and 5) 
and a HRD-like group (signatures 3 and 8). Somatic 
mutation spectra were quantified with the R package 
SomaticSignatures (version 2.6) and decomposed into 
contributions of known mutational signatures based on 
the Lawson–Hanson algorithm for non-negative least 
squares (nnls version 1.1, R package). The quantification 
error (residual sum of squares) was correlated with the 
total somatic mutation burden (Spearman’s r=0·74; 
p<0·0001) and it was highest in tumours with fewer than 
100 somatic SNVs. We have retained 375 whole-genome 
sequencing samples with more than 100 SNVs and low 
quantification error (<0·02) for signature analysis. 
Medulloblastomas were classified as homologous 
recombination repair deficient if most (>50%) somatic 
SNVs were assigned to mutational signatures 3 or 8.

To assess the burden of rare germline SNVs and indels 
in cancer predisposition genes, we performed case–
control association testing in a subgroup-specific manner 
as well as across all subgroups based on a collection 
of 110 autosomal cancer predisposition genes8,23 
(appendix p 2). All patients with medulloblastoma in our 
retrospective discovery cohort were eligible for rare 
variant burden analysis. We used 53 105 sequenced 
individuals without a known cancer diagnosis from ExAC 
(release 0.3) as controls. Age and sex were not matched 
between cases and controls because of missing infor
mation from ExAC. To ensure comparability with variants 
found in patients with medulloblastoma, ExAC germline 
mutations were normalised with vt normalize, annotated 
with VEP (r81), and filtered for sites that passed quality 
controls, as defined by ExAC. Moreover, we excluded any 
germline mutations that were present outside ExAC-
defined target regions to reduce any possible advantages 
derived from improved variant calling in whole-genome 
sequences (eg, exons not being covered in ExAC). 
Furthermore, we also did not include pathogenic struc
tural variants in our rare variant burden analysis. We 
assumed equal effect sizes for frameshift, nonsense, 
splice site, and gain-of-function missense variants, as well 
as for variants located at any position along a gene. The 
total number of damaging (a) and wild-type (A) alleles 
were counted for each gene in cases and controls, 
recorded in a 2 × 2 contingency table, and evaluated for 
statistical independence of rows (case and control) and 
columns (allele a and allele A) with Fisher’s exact test 
(to 1 df) implemented in R version 3.4 using the fisher.
exact function. Unadjusted p values were recorded for 
each gene and adjusted for multiple testing correction 
with the Bonferroni method. We only considered genes 
for which more than four pathogenic alleles were 
observed in cases and controls. Allelic relative risks were 
estimated by the odds ratio (OR), which describes the 
association between medulloblastoma and damaging 
alleles by comparing the odds of medulloblastoma in an 
individual carrying a wild-type allele to the odds of 

medulloblastoma in an individual carrying one damaging 
allele. We assumed that the penetrance of monoallelic 
germline mutations was lower than that of biallelic 
germline mutations (ie, homozygous and compound 
heterozygous mutations).

We assessed secondary somatic gene hits in tumours 
on three levels: point mutations, loss-of-heterozygosity, 
and allele-specific gene expression. Somatic point 
mutations were assumed to occur in trans (ie, on a 
different haplotype). Loss of heterozygosity was quan
tified by use of genotyping germline alleles in available 
tumour genomes or exomes with freebayes and requiring 
a minimum coverage of ten reads, minimum base 
quality of 10 (−10 log10 Pr[base is wrong]), and minimum 
mapping quality of 10 (−10 log10 Pr[mapping position is 
wrong]). Loss of heterozygosity was inferred if the variant 
allele frequency was above 80% in tumour sequences. 
Allele-specific gene expression was quantified at 
heterozygous SNVs and indels and mRNA sequencing 
data by use of freebayes (minimum mapping quality of 
10 [−10 log10 Pr(mapping position is wrong)] and 
minimum base quality of 10 [−10 log10 Pr(base is wrong)]) 
and was predicted on the basis of binomial tests, an 
expected ratio of 0·5, and p values lower than 0·05. 
When possible, multiple sites within the same gene were 
phased with paired-end RNA sequencing data and 
individual sites were merged to calculate haplotype-
specific expression ratios.

We investigated chromothripsis using previously 
established criteria.24 These criteria distinguish chromo
thripsis from DNA rearrangements occurring in a 
stepwise fashion. First, we analysed breakpoint 
clustering in the entire genome based on high-
confidence somatic structural variant calls and did 
statistical analysis for non-randomness of breakpoint 
distributions, under the assumption of an exponential 
distribution (null hypothesis). Breakpoint clustering 
generates highly clustered DNA breaks that might be 
followed by long tracts of intact DNA segments. For each 
sample and chromosome, a Kolmogorov–Smirnov test 
was used to test against the null hypothesis. Then we 
assessed the randomness of DNA rearrangements using 
a multinomial test (implemented in the R package EMT) 
for chromosomes with putative chromothripsis patterns. 
For chromosomes undergoing chromothripsis, the 
shattered fragments were randomly stitched together 
according to the original chromothripsis model. This 
model implies that for each DNA break, the orientation 
of the two joined DNA fragment ends will be random. 
We tested the observed distribution of rearrangement 
joins (tail-to-head, head-to-tail, head-to-head, and tail-to-
tail) against a background model of occurrence with 
equal probability (ie, a probability of 0·25 for each 
rearrangement).

Molecular classification of medulloblastomas into 
consensus subgroups9 (MBWNT, MBSHH, MBGroup3, and 
MBGroup4) was determined by DNA methylation profiling.25
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Statistical analysis
No formal sample size and power calculations were done 
in this study, since we made use of all germline genomes 
and exomes available to us. Samples with missing data 
were excluded from specific analysis. We used Fisher’s 
exact and χ² tests for associations with binary and 
categorical variables, and Mann-Whitney U and Kruskal-
Wallis tests for associations with quantitative values. 
Survival analysis was based on the Kaplan-Meier 
estimator and log-rank tests using the R package suvival 
(version 2.41), and survival curves were visualised using 
the R package survminer (version 0.4.2). Overall survival 
and progression-free survival were based on definitions 
consistent with how they were evaluated within each 
respective patient cohort from each prospective trial: 
SJMB03, SJMB12, and SJYC07. The prospective obser
vational patient registry I-HIT-MED had no formal 
endpoints and so no statistical analyses were defined. 
Detailed outcome measures for all four studies are 
available on ClinicalTrials.gov. One-sided binomial tests 
were used for replication analysis with the alternative 
hypothesis defined as a lower probability of observing 
germline mutations in the replication cohort.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding authors had full 
access to all the data and had the final responsibility to 
submit for publication.

Results
We analysed germline genome-sequencing and exome-
sequencing data (appendix pp 8–9) from 1022 patients 
with medulloblastoma, of whom 673 were in the retro
spective discovery cohort and 349 were in the prospective 
clinical study cohort (figure 1A, appendix p 3). Patient-
matched tumour genomes were sequenced for 
800 samples from both cohorts (n=451 retrospective and 
n=349 prospective) from whole-genome sequencing 
(n=397) and whole-exome sequencing (n=403; figure 1A). 
Molecular classification of medulloblastomas into 
subgroups was done for 844 patients (n=496 retrospective 
cohort and n=348 prospective cohort). SNVs, MNVs, 
small (<30 bp) indels, and large structural variants were 
predicted across 110 paediatric-onset and adult-onset 
cancer predisposition genes8,23 and classified as patho
genic based on stringent criteria. 

We identified damaging germline mutations in 
76 (11%) of 673 patients in our retrospective cohort and 
across 32 genes (appendix pp 10–12). Most damaging 
germline mutations have been previously described in 
the literature (in 55 [71%] of 77 mutations) and already 
classified as (likely) pathogenic (42 [55%] of 77) in public 
archives (ClinVar, LOVD; appendix pp 10–12). Discovery 
of consensus medulloblastoma predisposition genes was 
based on rare variant burden analysis using 673 patients 

with medulloblastoma and 53 105 ExAC controls. In total, 
six genes showed a significant excess of damaging 
germline mutations for patients with medulloblastoma—
namely, APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 
(adjusted p value for multiple testing <0·05; figure 1B, 
appendix p 4). Restricting the analysis to patients and 
controls with European population ancestry revealed no 
additional candidate medulloblastoma predisposition 
genes (appendix p 4). Moreover, we did not identify 
patients with biallelic germline mutations in mismatch 
repair genes (ie, MSH2, MSH6, MLH1, and PMS2). 
However, a single patient in our discovery cohort 
harboured a heterozygous germline mutation in MSH6 
(appendix pp 10–12).

The overall prevalence of genetic predisposition based 
on these six genes in the retrospective discovery cohort 
was 6% (40/673), with a highest prevalence of 20% (28/141) 
in patients in the MBSHH subgroup (figure 1C). Replication 
of these estimates was based on 349 patients who were 
enrolled in the prospective clinical studies. Key patient 
characteristics, such as sex, age at diagnosis, and 
molecular tumour subgroups, were similar between both 
cohorts (psex=0·68, page=0·17, psubgroup=0·12; figure 1A). The 
overall prevalence of genetic predisposition in our 
prospective cohort (17 [5%] of 349) was consistent with 
estimates from our retrospective cohort (p=0·24; 
figure 1D, appendix pp 10–12). We further replicated the 
high prevalence of genetic predisposition in patients in 
the MBSHH subgroup (figure 1D). Notably, patients in the 
MBWNT subgroup also had an increased prevalence of 
germline predisposition in both the discovery and 
replication cohort, albeit more modest than for patients in 
the MBSHH subgroup (figure 1C, D).

We closely analysed key demographic, clinical, and 
molecular characteristics of patients with a genetic 
predisposition in these six genes. Most patients with 
available subgroup information developed MBSHH (41 [76%] 
of 54; figure 2A) and age at diagnosis also differed 
significantly between patients with germline mutations in 
medulloblastoma predisposition genes (p<0·0001; 
figure 2B). Patients with germline SUFU or PTCH1 
mutations were typically diagnosed as infants at a median 
age of 2·0 years (IQR 1·3–2·3), whereas patients with 
APC or TP53 mutations were diagnosed as children at a 
median age of 9·8 years (IQR 8·0–11). Analysis of 
histological subtypes in relation to genetic predisposition 
is presented in the appendix (p 2). Clinical signs of a 
genetic predisposition were noted in 16 (41%) of 39 patients 
and familial history of cancer in 17 (46%) of 37 patients, 
and both were different between patients with germline 
mutations in medulloblastoma predisposition genes 
(p=0·017 and p=0·046, respectively; figure 2C, 2D). For 
example, only one (9%) of all 11 PTCH1 and SUFU 
mutation carriers with available medical records had 
a family history of cancer; however, eight (67%) of 
12 patients with available medical records had 
clinical symptoms consistent with Gorlin’s syndrome 

http://www.lovd.nl/3.0/home
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(eg, macrocephaly, jaw cysts, and frontal bossing; appendix 
pp 10–12). By contrast, all four APC mutation carriers with 
available medical records had a familial history of familial 
adenomatous polyposis and associated cancers (eg, 
adrenocortical carcinoma). Of note, additional malig
nancies were observed in six (12%) of 50 patients with 
medulloblastoma and all were restricted to patients with 
germline APC (n=3) or TP53 (n=3) mutations (appendix 
pp 10–12).

At a median follow-up of 48 months (IQR 28–78), 
5-year progression-free survival for 49 patients with a 
genetic predisposition who were evaluable for this 
outcome was 52% (95% CI 40–69). 5-year overall survival 
in 47 evaluable patients with a genetic predisposition 
was 65% (95% CI 52–81). Progression-free survival (log-
rank p=0·0056) and overall survival (log-rank p=0·00032) 
differed significantly across patients with germline 
mutations in different medulloblastoma predisposition 
genes (figure 3).

Germline APC mutations were found in seven (1%) of 
all 1022 patients with medulloblastoma and included one 
infant, five children, and one adult patient. Two of these 

seven patients harboured partial or full gene deletions 
(appendix p 5) and the remaining five patients had 
frameshift and nonsense mutations between codons 554 
and 1113, a region associated with classical familial 
adenomatous polyposis phenotypes. Molecular subgroup 
information was available for six cases and showed that 
all five children developed MBWNT. One infant developed 
MBSHH (appendix p 1). All five WNT-driven medullo
blastomas lost the wild-type APC allele and the SHH-
driven medulloblastoma showed retention of the 
wild-type allele (figure 4A). Furthermore, germline APC 
mutations in MBWNT patients were mutually exclusive 
with somatic CTNNB1 exon 3 mutations (p<0·0001), the 
primary26 somatic driver event in MBWNT (figure 4B). 
Overall, germline APC mutations were identified in 
five (71%) of seven CTNNB1-wild-type MBWNT cases and, 
together with somatic CTNNB1 mutations, explained 
97% (64/66) of all WNT-driven medulloblastomas. By 
contrast, monosomy 6—a frequent somatic chromosome 
aberration in MBWNT (in 55 [83%] of 66 cases)—was 
not mutually exclusive with germline APC mutation 
status (p=0·19); although we observed two patients with 

Figure 1: Discovery and replication of medulloblastoma predisposition genes
(A) Study design and patient characteristics. (B) Rare variant burden analysis based on 673 patients with medulloblastoma and 53 105 controls from the Exome Aggregation Consortium. Diagnosis of 
medulloblastoma was the outcome variable. Proportion of patients with a genetic predisposition in our (C) retrospective cohort and (D) prospective cohort. (D) p values indicate statistical differences in the 
proportion of germline mutation carriers in the retrospective compared with prospective cohort. Infant=age 3 years or younger. Child=age 4–17 years. Adult=age 18 years or older. RR=relative risk. *p<0·001. 
†p<0·01. ‡p<0·05. §Patients with damaging germline mutations in APC, PTCH1, SUFU, TP53, PALB2, and BRCA2.
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APC mutations and balanced chromosome 6 (figure 4B). 
We recorded no difference in age at diagnosis between 
patients with germline APC mutations and somatic 
CTNNB1 mutations (p=0·92; figure 4B). Overall and 
progression-free survival for patients with APC-MBWNT 
was 100% (95% CI 100–100).

Germline TP53 mutations were found in 14 (1%) of all 
1022 patients with medulloblastoma and were only present 
in patients with MBSHH (13/13; data missing for one 
patient). Notably, germline TP53 mutations were identified 
in 13 (8%) of 170 paediatric MBSHH patients and 13 (20%) of 
63 children aged between 5 years and 16 years with MBSHH. 
Only five (4%) of 11 patients with germline TP53 mutations 
had a family history of cancer (figure 2B). Most germline 
TP53 mutations (13/14) clustered within the DNA-binding 
domain (appendix p 6) and somatic inactivation of the 
wild-type TP53 allele was detected in all 13 available 
medulloblastoma genomes via loss of heterozygosity 
(figure 4A). All eight whole-genome-sequenced TP53-
deficient MBSHH exhibited complex somatic genomic 
rearrangements consistent with chromothripsis21 and 
accounted for eight (57%) of all 14 chromothripsis events 
in the MBSHH subgroup. The remaining six patients with 
chromothripsis-positive MBSHH harboured somatic TP53 
mutations. 5-year overall survival for patients with 

germline TP53 mutations was 27% (95% CI 10–72; 
figure 3).

Germline SUFU and PTCH1 mutations were detected 
in 20 (2%) of all 1022 patients with medulloblastoma, 
exclusively in the MBSHH subgroup (19/19; data 
missing for one patient), and accounted for 11% (18/170) 
of all paediatric patients with MBSHH and 21% (17/80) of 
all infant patients with MBSHH. We observed somatic loss 
of the SUFU or PTCH1 wild-type allele in all (n=18) 
sequenced MBSHH that were diagnosed in patients with 
germline SUFU or PTCH1 mutations. Most (15/18) 
SUFU-deficient or PTCH1-deficient MBSHH lost the wild-
type allele via loss of heterozygosity (figure 4A). Only six 
of 20 germline SUFU and PTCH1 mutations have been 
previously described in the literature (appendix pp 10–12), 
suggesting either appreciable amounts of de-novo 
mutagenesis or poor reporting to public archives. In 
support of the de-novo mutagenesis theory, a de-novo 
germline PTCH1 mutation was observed in a patient 
with MBSHH from our retrospective cohort, for whom 
whole-exome sequences were also available for both 
parents. We also identified putative protein-truncating 
mosaic PTCH1 mutations in three patients with MBSHH 
(in whom variant allele frequency ranged from 
4·7% to 6·7% in the blood). Clinical information was 

Figure 2: Clinical characteristics of patients with a genetic predisposition
(A) Molecular tumour subgroups. (B) Age at diagnosis. (C) Family history of cancer. (D) Clinical signs of a genetic predisposition. p values indicate whether there is a 
difference between patients with different types of genetic predisposition. *Patients with compound heterozygous germline BRCA2 mutations. †Data are median 
(IQR). Circle sizes indicate the proportion of patients with a genetic predisposition. 
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available for one patient with a mosaic PTCH1 mutation, 
which showed that the patient was clinically diagnosed 
with Gorlin’s syndrome and the patient had no family 
history of cancer and no family history of Gorlin’s 
syndrome. Moreover, comparison of clinical outcomes 
between patients with germline mutations in SUFU and 
PTCH1 showed no differences in progression-free 
survival (p=0·50, 16 patients with germline mutations) 
and overall survival (p=0·91, 17 patients with germline 
mutations). Notably, patients with germline mutations in 
either SUFU or PTCH1 had a better overall survival than 
progression-free survival (combined 5-year progression-
free survival 56% for SUFU and PTCH1 mutations, 
95% CI 37–87; combined 5-year overall survival 85%, 
95% CI 67–100; figure 3).

Germline BRCA2 mutations were present in 11 (1%) of 
all 1022 patients with medulloblastoma and included 
ten paediatric patients and one adult (survival data not 
available for all patients with these mutations). The 
median age at diagnosis was 5·7 years (IQR 3·0–8·3). 
Most of these mutations (16 [89%] of 18) were previously 
classified as pathogenic according to ClinVar (appendix 
pp 10–12). We observed compound heterozygosity at 
BRCA2 in four (36%) of 11 patients. Clinical signs of a 
genetic predisposition or family history of cancer were 
noted in all four compound heterozygous patients and in 
four (80%) of five heterozygous patients with available 
medical records. Patients with compound heterozygous 
mutations at BRCA2 developed exclusively MBSHH 
(p=0·0060 when compared with any other subgroup; 
figure 2A) and exhibited worse progression-free survival 
(p=0·025) and overall survival (p=0·022) relative to 
patients with heterozygous germline BRCA2 mutations 
(figure 3). When compared with 53 105 controls, the 
burden of rare germline mutations in BRCA2 was 
associated with increased risk of MBSHH (relative risk [RR] 
13·8 [5·4–29·4]; p<0·0001) and MBGroup3/4 (RR 4·2 
[1·4–10·1]; p=0·0077). Overall and progression-free 
survival of heterozygous germline BRCA2 mutation 
carriers was 100% (95% CI 100–100) and none developed 
secondary malignancies. Analysis of medulloblastoma 
genomes revealed that all seven heterozygous BRCA2 
mutation carriers retained the wild-type BRCA2 allele. 
Additional details about family history of cancer, parental 
genetic testing, and somatic mutation profiles in 
heterozygous and compound heterozygous BRCA2 
mutation carriers are provided in the appendix (p 1).

Germline PALB2 mutations were found in five (<1%) of 
all 1022 patients with medulloblastoma. We identified 
three patients with MBSHH, one patient with MBGroup3 and 
one patient with MBGroup4. All five damaging germline 
mutations were heterozygous in patients affected with 
medulloblastoma and were previously reported in familial 
pancreatic and breast cancer studies.27 All five germline 
mutations were classified as pathogenic according to 
ClinVar (appendix pp 10–12). Although heterozygous 
PALB2 mutations are known8 to increase the risk of 

adult-onset cancers (eg, breast cancer), predisposition to 
paediatric malignancies has so far only been described in 
the context of Fanconi anaemia.28 We excluded the pre
disposition to Fanconi anaemia in all five cases because of 
an absence of additional rare germline mutations 
(including protein-truncating variants, missense muta
tions, and inframe indels). Furthermore, clinical signs of 
a genetic disorder were absent in both paediatric cases 
with available medical records (figure 2D). Analysis of 

Figure 3: Kaplan-Meier curves for survival outcomes of patients with a genetic predisposition
(A) Progression-free survival. (B) Overall survival. Log-rank p values indicate differences across all patient groups.
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medulloblastoma genomes revealed somatic inactivation 
of the wild-type PALB2 allele in all three paediatric cases 
and retention of heterozygosity in both adult cases 
(figure 4A). 5-year overall and progression-free survival 
for patients with germline PALB2 mutations was 75% 
(95% CI 43–100). Additional details about family history 
of cancer, parental genetic testing, and somatic mutation 
profiles available for one affected patient are presented in 
the appendix (p 1).

Since the clinical relevance of heterozygous germline 
mutations in PALB2 and BRCA2 is uncertain, we aimed to 
corroborate our findings through investigation of somatic 
mutation patterns (mutational signatures) in medullo
blastoma genomes. Quantification of four previously 
implicated mutational signatures (signatures 1, 3, 5, and 8) 
across 375 medulloblastoma genomes showed a significant 
association between both HRD signatures (signatures 3 
and 8) and germline BRCA2 and PALB2 mutation status 
(figure 4C, appendix p 7). Moreover, although the overall 
prevalence of an HRD-like mutation spectrum was modest 
in medulloblastoma (58 [15%] of 375), it was enriched in 
BRCA2-deficient and PALB2-deficient tumours as 

compared with tumours with other genetic mutations 
(OR 19·0 [95% CI 4·5–113], p<0·0001). In total, nine (75%) 
of 12 BRCA2-deficient and PALB2-deficient tumours 
showed evidence for an HRD-like mutation spectrum. 
Strikingly, eight (89%) of nine patients with MBSHH and an 
HRD-like mutation spectrum harboured germline 
mutations in consensus medulloblastoma predisposition 
genes (BRCA2 n=4, PALB2 n=2, and TP53 n=2), suggesting 
that HRD might serve as a biomarker for genetic 
predisposition in this patient group. We also observed five 
patients in the MBWNT subgroup with an HRD-like mutation 
spectrum and noticed that four (89%) of five cases were 
diagnosed as adults (p=0·0003 for paediatric vs adult cases). 
The only paediatric patient in the MBWNT subgroup with an 
HRD-like mutation spectrum harboured a pathogenic 
heterozygous germline mutation in ATM along with 
somatic inactivation of the wild-type ATM allele (appendix 
pp 10–12). Finally, we also identified heterozygous germline 
mutations in FANCA (n=1) and FANCQ (n=1) in patients 
with MBGroup3 and MBGroup4, respectively, and an HRD-like 
mutation spectrum. Taken together, these results cor
roborate our genetic findings and indicate that genetic 

Figure 4: Molecular medulloblastoma characteristics for patients with a genetic predisposition
(A) Patterns of somatic inactivation of wild-type alleles for all patients with a germline mutation in one of the consensus medulloblastoma predisposition genes. 
Circle sizes indicate the proportion of patients with a genetic predisposition. (B) Somatic driver events in patients with medulloblastoma in the WNT subgroup (top 
panel) and age at diagnosis for all patients with germline APC mutations and patients in the WNT subgroup with somatic CTNNB1 mutations (bottom panel). 
(C) Association between germline PALB2 (n=5) and BRCA2 (n=7) mutation status and somatic mutational signatures 1, 3, 5, and 8. EXP=allele-specific gene 
expression. MUT=somatic inactivation via single nucleotide variation, insertion, or deletion. LOH=loss of heterozygosity. ND=no somatic alteration detected. NS=not 
significant. HRD=homologous recombination repair deficiency. *Present study and Hamilton and colleagues.5 †p<0·001. ‡p<0·01. §p<0·05.
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alteration of homologous recombination genes is associated 
with an HRD-like mutation spectrum in medulloblastoma. 

Discussion
To the best of our knowledge, this study is the largest so 
far on genetic predisposition in a single paediatric brain 
tumour entity. Our rare variant burden analyses revealed 
that genetic predisposition has a major role in the cause 
of medulloblastoma after accounting for molecular 
subgroups, with a high prevalence in MBWNT and MBSHH 
patient subgroups. Moreover, we identified that less 
than half of all germline cases were suspected based 
on medical records and that patients with genetic 
predispositions exhibit distinct clinical outcomes. Our 
data show the urgent need to establish genetic 
counselling and genetic testing as a standard-of-care 
procedure in patients with MBWNT and MBSHH. We 
therefore provide clinical screening guidelines based on 
routinely acquired patient and tumour characteristics 
(figure 5). Recommendations for surveillance and clinical 
management of individual childhood cancer pre
disposition syndromes have been summarised in a series 
of articles29 from the American Association for Cancer 
Research Childhood Cancer Predisposition Workshop. 
Our study complements these recommendations by 
providing additional diagnostic criteria based on clinical 
and molecular characteristics.

Here, we identified heterozygous germline APC 
mutations in 6–8% of patients in the MBWNT molecular 
subgroup and showed that genetic cases were indistin
guishable from sporadic cases based on age at diagnosis. 
Importantly, all patients with APC-deficient MBWNT did not 
have the hallmark somatic driver event of MBWNT—namely, 
somatic missense mutations in CTNNB1 (the gene 
encoding β-catenin). Overall, germline APC and somatic 
CTNNB1 mutations accounted for nearly all (97%) MBWNT 
diagnoses. We therefore recommend genetic counselling 
only for germline APC mutations in patients with MBWNT. 
In our series, patients with MBWNT and germline APC 
mutations showed favourable clinical outcomes, which 
mirrors the favourable outcome for patients with MBWNT 
with nuclear accumulation of β-catenin.30 Nevertheless, 
several patients with germline APC mutations had an 
additional malignancy, which emphasises the need to 
provide genetic counselling for patients with MBWNT in the 
future, irrespective of clinical outcomes. Notably, we also 
observed a patient with atypical APC who was diagnosed 
during infancy with MBSHH and retained the wild-type 
APC allele. Additional studies will be needed to assess 
whether or not germline APC mutations are a genetic risk 
factor for MBSHH.

Given the particularly high prevalence of damaging 
germline mutations in patients with MBSHH, we 
recommend that all patients with MBSHH should be 
counselled for genetic testing. We recommend ordering of 
these tests by age at diagnosis and molecular phenotypes 
(eg, chromothripsis or HRD signatures). Patients younger 

than 3 years of age should initially be tested for germline 
mutations in SUFU and PTCH1 (especially in view of the 
high prevalence of SUFU mutations in infant patients 
with MBSHH in our study, which is consistent with previous 
reports31), and children older than 3 years for germline 
TP53 mutations. By contrast, germline mutations in 
PALB2 and BRCA2 showed no strict associations with age 
at diagnosis (observed in infants, children, and adults). 
We thus recommend that patients with MBSHH should be 
screened for germline mutations in PALB2 and BRCA2 
following a negative test result for the aforementioned 
genes. We further observed germline PALB2 and BRCA2 
mutations in 1–2% of patients with MBGroup3/4. Based on 
these findings we recommend conservative ordering of 
genetic tests in these patient groups (eg, those with 
familial history of BRCA-associated cancers or if 
mutational signatures are suggestive of HR deficiency—
specifically signatures 3 and 8, the latter of which has 
previously been reported to be associated with breast 
cancer).32

Genetic counselling and testing for germline PALB2 
and BRCA2 mutations in paediatric patients has so far 
been pursued only in case of suspected Fanconi anaemia. 
By use of integrative genomic analyses, we showed that 
heterozygous mutations in BRCA2 and PALB2 are 
associated with an increased risk of medulloblastoma and 
of HR-deficient tumours. All identified heterozygous 
germline mutations are rare in the general population 
(minor allele frequency <0·01%) and were classified in 
most patients as (likely) pathogenic in ClinVar. Magnusson 
and colleagues33 reported that families with germline 
mutations in BRCA2 had an increased prevalence of 

Figure 5: Proposed clinical guidelines for genetic counselling and testing in 
medulloblastoma based on clinical and molecular tumour characteristics
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childhood tumours compared with population-based 
control families. Medulloblastoma genomes from patients 
with heterozygous germline mutations in BRCA2 and 
PALB2 described in our study show strong signs of HRD. 
Many studies have sought to elucidate the mechanisms of 
genomic instability in heterozygous BRCA2 and PALB2 
mutation carriers. For example, it was shown that cells 
from heterozygous PALB2 mutation carriers exhibited an 
aberrant DNA replication stress response and increased 
amounts of spontaneous genomic instability,34 and 
analysis of double-strand break repair outcomes35 revealed 
a shift towards error-prone DNA repair pathways. 
Furthermore, one study36 presented evidence showing that 
naturally occurring concentrations of formaldehyde, a 
product of cellular metabolism, can selectively deplete 
BRCA2 via proteasomal degradation and induce genomic 
instability. Although wild-type cells retained adequate 
protein concentrations in that study, cells heterozygous 
for truncating BRCA2 mutations showed enhanced 
susceptibility to formaldehyde-induced genomic insta

bility. Future research is needed to understand whether 
and to what extent BRCA2 and PALB2-deficient medullo
blastomas might be sensitive to aldehyde-induced DNA 
damage. Moreover, consequent identification of paediatric 
patients with heterozygous germline mutations in PALB2 
and BRCA2 will be valuable to further evaluate whether 
HR-deficient tumours show a particularly favourable 
response to standard platinum-based chemotherapy and 
whether they might benefit from combination therapies 
with PARP inhibitors.

Germline mutations in TP53 accounted for the 
highest proportion of genetic cases among paediatric 
patients in the MBSHH subgroup. This patient group 
showed especially poor clinical outcomes as well as 
secondary malignancies. This finding underscores the 
need for a dedicated treatment protocol, which is being 
prepared by the International Society of Paediatric 
Oncology PNET 5 Medulloblastoma study group and by 
an international registry for this high-risk patient 
group.37 Additionally, clinical surveillance of germline 
TP53 mutation carriers has been shown to result in 
earlier detection of tumours and therefore improved 
long-term survival.38

We also observed rare and damaging germline 
mutations with potential clinical relevance in additional 
genes based on loss of heterozygosity analysis and 
somatic mutation patterns (eg, ATM and PTEN). The 
molecular and clinical evidence reported in this study 
was, however, not fully conclusive for these additional 
genes. Long-term follow-up studies and more detailed 
molecular analysis will be necessary to provide 
unambiguous recommendations for routine genetic 
screening of these genes. Of note, we did not identify 
patients with biallelic germline mutations in mismatch 
repair genes (MSH2, MSH6, MLH1, and PMS2). A single 
patient harboured a heterozygous germline MSH6 
mutation in our discovery cohort; however, the meaning 

of this observation remains uncertain owing to the 
absence of tumour material for molecular analyses.

Our study does have some limitations. Because of the 
multiple (and in part heterogeneous) cohorts used in our 
study, familial history of cancer could not be obtained in 
a standardised form for all patients carrying a genetic 
predisposition. Furthermore, we did not make any effort 
to pursue retrospective collection of clinical information 
from patients without a detected genetic predisposition. 
Larger cohort sizes in further studies will be necessary to 
assess the impact of germline mutations on clinical 
outcomes within molecular subgroups as well as relative 
to patients who develop sporadic medulloblastoma due 
to somatic mutations in the same set of genes (eg, PTCH1, 
SUFU, and TP53). These larger molecular cohorts will 
further enable pinpointing of shared somatic driver 
events in patients with a genetic predisposition. 
Furthermore, we note that our rare variant burden 
analysis against ExAC was restricted to regions covered 
by whole-exome sequencing, was restricted to genes 
previously involved in cancer predisposition, and 
excluded pathogenic germline structural variants. 
Although these steps aimed to reduce potential biases 
from analysing heterogeneous sequencing cohorts, we 
cannot rule out that particular classes of germline 
variation might have been under-represented. Finally, it 
is also possible that additional genes are involved in 
medulloblastoma predisposition, which were not 
previously associated with hereditary cancer syndromes.
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