99 research outputs found

    Fermi Gamma-ray Imaging of a Radio Galaxy

    Get PDF
    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton scattered relic radiation from the cosmic microwave background (CMB), with additional contribution at higher energies from the infrared-to-optical extragalactic background light (EBL). These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, and a promising method to probe the cosmic relic photon fields.Comment: 27 pages, includes Supplementary Online Material; corresponding authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar

    Fermi Large Area Telescope observations of PSR J1836+5925

    Full text link
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1×1034\times10^{34} erg s1^{-1}, and a large off-peak emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the off-peak emission indicate it is likely magnetospheric. Analysis of recent XMM observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    MOG-IgG Optic Neuritis (Slides)

    No full text
    Optic neuritis is the most common cause of optic neuropathy in young patients, which can cause debilitating vision loss and blindness. Two novel glial autoantibodies have been discovered that better characterize a subset of patients with optic neuritis. In 2004, antibodies against an astrocytic water channel, aquaporin-4 (AQP4) were discovered, which greatly improved our understanding and detection of the clinical entity neuromyelitis optica spectrum disorders (NMOSD). More recently, antibodies specific for myelin oligodendrocyte glycoprotein (MOG-IgG), have been found in a subset of patients with optic neuritis and other demyelinating phenotypes. Although initially erroneously associated with multiple sclerosis in early literature with use of solid-phase assays, newer live transfected cell-based assays have shown MOG-IgG to be a reproducible marker for a subset of patients with optic neuritis, AQP4-IgG seronegative inflammatory CNS demyelinating disorders with NMOSD-like phenotype, and acute disseminated encephalomyelitis (ADEM).ICmog; ICopticneuriti

    Myelinated Nerve Fibers

    No full text
    Fundus photographs of a 19-year old female with prominent peripapillary myelinated nerve fibers in both eyes that was incidentally found on routine eye examination

    Peripapillary Myelinated Nerve Fibers

    No full text
    Fundus photographs of a 19-year old female with prominent peripapillary myelinated nerve fibers in both eyes that was incidentally found on routine eye examination

    Bilateral Nucleus Basalis of Meynert Deep Brain Stimulation for dementia with Lewy bodies A Randomised Clinical Trial

    No full text
    Background: Dementia with Lewy bodies (DLB) is the second most common form of dementia. Current symptomatic treatment with medications remains inadequate. Deep brain stimulation of the nucleus basalis of Meynert (NBM DBS) has been proposed as a potential new treatment option in dementias. Objective: To assess the safety and tolerability of low frequency (20 Hz) NBM DBS in DLB patients and explore its potential effects on both clinical symptoms and functional connectivity in underlying cognitive networks. Methods: We conducted an exploratory randomised, double-blind, crossover trial of NBM DBS in six DLB patients recruited from two UK neuroscience centres. Patients were aged between 50-80 years, had mild-moderate dementia symptoms and were living with a carer-informant. Patients underwent image guided stereotactic implantation of bilateral DBS electrodes with the deepest contacts positioned in the Ch4i subsector of NBM. Patients were subsequently assigned to receive either active or sham stimulation for six weeks, followed by a two week washout period, then the opposite condition for six weeks. Safety and tolerability of both the surgery and stimulation were systematically evaluated throughout. Exploratory outcomes included the difference in scores on standardised measurements of cognitive, psychiatric and motor symptoms between the active and sham stimulation conditions, as well as differences in functional connectivity in discrete cognitive networks on resting state fMRI. Results: Surgery and stimulation were well tolerated by all six patients (five male, mean age 71.33 years). One serious adverse event occurred: one patient developed antibiotic-associated colitis, prolonging his hospital stay by two weeks. No consistent improvements were observed in exploratory clinical outcome measures, but the severity of neuropsychiatric symptoms reduced with NBM DBS in 3/5 patients. Active stimulation was associated with functional connectivity changes in both the default mode network and the frontoparietal network. Conclusion: Low frequency NBM DBS can be safely conducted in DLB patients. This should encourage further exploration of the possible effects of stimulation on neuropsychiatric symptoms and corresponding changes in functional connectivity in cognitive networks. Trial registration number: NCT02263937
    corecore