2,967 research outputs found

    Faster Parametric Shortest Path and Minimum Balance Algorithms

    Full text link
    The parametric shortest path problem is to find the shortest paths in graph where the edge costs are of the form w_ij+lambda where each w_ij is constant and lambda is a parameter that varies. The problem is to find shortest path trees for every possible value of lambda. The minimum-balance problem is to find a ``weighting'' of the vertices so that adjusting the edge costs by the vertex weights yields a graph in which, for every cut, the minimum weight of any edge crossing the cut in one direction equals the minimum weight of any edge crossing the cut in the other direction. The paper presents fast algorithms for both problems. The algorithms run in O(nm+n^2 log n) time. The paper also describes empirical studies of the algorithms on random graphs, suggesting that the expected time for finding a minimum-mean cycle (an important special case of both problems) is O(n log(n) + m)

    2-Vertex Connectivity in Directed Graphs

    Full text link
    We complement our study of 2-connectivity in directed graphs, by considering the computation of the following 2-vertex-connectivity relations: We say that two vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint paths from v to w and two internally vertex-disjoint paths from w to v. We also say that v and w are vertex-resilient if the removal of any vertex different from v and w leaves v and w in the same strongly connected component. We show how to compute the above relations in linear time so that we can report in constant time if two vertices are 2-vertex-connected or if they are vertex-resilient. We also show how to compute in linear time a sparse certificate for these relations, i.e., a subgraph of the input graph that has O(n) edges and maintains the same 2-vertex-connectivity and vertex-resilience relations as the input graph, where n is the number of vertices.Comment: arXiv admin note: substantial text overlap with arXiv:1407.304

    Efficient Enumeration of Induced Subtrees in a K-Degenerate Graph

    Full text link
    In this paper, we address the problem of enumerating all induced subtrees in an input k-degenerate graph, where an induced subtree is an acyclic and connected induced subgraph. A graph G = (V, E) is a k-degenerate graph if for any its induced subgraph has a vertex whose degree is less than or equal to k, and many real-world graphs have small degeneracies, or very close to small degeneracies. Although, the studies are on subgraphs enumeration, such as trees, paths, and matchings, but the problem addresses the subgraph enumeration, such as enumeration of subgraphs that are trees. Their induced subgraph versions have not been studied well. One of few example is for chordless paths and cycles. Our motivation is to reduce the time complexity close to O(1) for each solution. This type of optimal algorithms are proposed many subgraph classes such as trees, and spanning trees. Induced subtrees are fundamental object thus it should be studied deeply and there possibly exist some efficient algorithms. Our algorithm utilizes nice properties of k-degeneracy to state an effective amortized analysis. As a result, the time complexity is reduced to O(k) time per induced subtree. The problem is solved in constant time for each in planar graphs, as a corollary

    Illustrated key to the genera of free-living marine nematodes of the Order Enoplida

    Get PDF
    A pictorial key to US genera of free-living marine nematodes in the order Enoplida is presented. Specific morphological and anatomical features are iUustrated to facilitate use of the key. The purpose of this work is to provide a single key to the genera of enoplid nematodes to facilitate identification of these organisms by nematologists and marine biologists working with meiofauna. (PDF file contains 32 pages.

    A Back-to-Basics Empirical Study of Priority Queues

    Full text link
    The theory community has proposed several new heap variants in the recent past which have remained largely untested experimentally. We take the field back to the drawing board, with straightforward implementations of both classic and novel structures using only standard, well-known optimizations. We study the behavior of each structure on a variety of inputs, including artificial workloads, workloads generated by running algorithms on real map data, and workloads from a discrete event simulator used in recent systems networking research. We provide observations about which characteristics are most correlated to performance. For example, we find that the L1 cache miss rate appears to be strongly correlated with wallclock time. We also provide observations about how the input sequence affects the relative performance of the different heap variants. For example, we show (both theoretically and in practice) that certain random insertion-deletion sequences are degenerate and can lead to misleading results. Overall, our findings suggest that while the conventional wisdom holds in some cases, it is sorely mistaken in others
    • …
    corecore