223 research outputs found

    Psychometric properties of the Spanish version of the Clinical Outcomes in Routine Evaluation Outcome Measure

    Get PDF
    Objective: The objective of this paper is to assess the reliability and validity of the Spanish translation of the Clinical Outcomes in Routine Evaluation – Outcome Measure, a 34-item selfreport questionnaire that measures the client’s status in the domains of Subjective well-being, Problems/Symptoms, Life functioning, and Risk. Method: Six hundred and forty-four adult participants were included in two samples: the clinical sample (n=192) from different mental health and primary care centers; and the nonclinical sample (n=452), which included a student and a community sample. Results: The questionnaire showed good acceptability and internal consistency, appropriate test–retest reliability, and acceptable convergent validity. Strong differentiation between clinical and nonclinical samples was found. As expected, the Risk domain had different characteristics than other domains, but all findings were comparable with the UK referential data. Cutoff scores were calculated for clinical significant change assessment. Conclusion: The Spanish version of the Clinical Outcomes in Routine Evaluation – Outcome Measure showed acceptable psychometric properties, providing support for using the questionnaire for monitoring the progress of Spanish-speaking psychotherapy clients

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    What is a smart device? - a conceptualisation within the paradigm of the internet of things

    Get PDF
    The Internet of Things (IoT) is an interconnected network of objects which range from simple sensors to smartphones and tablets; it is a relatively novel paradigm that has been rapidly gaining ground in the scenario of modern wireless telecommunications with an expected growth of 25 to 50 billion of connected devices for 2020 Due to the recent rise of this paradigm, authors across the literature use inconsistent terms to address the devices present in the IoT, such as mobile device, smart device, mobile technologies or mobile smart device. Based on the existing literature, this paper chooses the term smart device as a starting point towards the development of an appropriate definition for the devices present in the IoT. This investigation aims at exploring the concept and main features of smart devices as well as their role in the IoT. This paper follows a systematic approach for reviewing compendium of literature to explore the current research in this field. It has been identified smart devices as the primary objects interconnected in the network of IoT, having an essential role in this paradigm. The developed concept for defining smart device is based on three main features, namely context-awareness, autonomy and device connectivity. Other features such as mobility and userinteraction were highly mentioned in the literature, but were not considered because of the nature of the IoT as a network mainly oriented to device-to-device connectivity whether they are mobile or not and whether they interact with people or not. What emerges from this paper is a concept which can be used to homogenise the terminology used on further research in the Field of digitalisation and smart technologies

    Peripheral Immune Cell Gene Expression Predicts Survival of Patients with Non-Small Cell Lung Cancer

    Get PDF
    Prediction of cancer recurrence in patients with non-small cell lung cancer (NSCLC) currently relies on the assessment of clinical characteristics including age, tumor stage, and smoking history. A better prediction of early stage cancer patients with poorer survival and late stage patients with better survival is needed to design patient-tailored treatment protocols. We analyzed gene expression in RNA from peripheral blood mononuclear cells (PBMC) of NSCLC patients to identify signatures predictive of overall patient survival. We find that PBMC gene expression patterns from NSCLC patients, like patterns from tumors, have information predictive of patient outcomes. We identify and validate a 26 gene prognostic panel that is independent of clinical stage. Many additional prognostic genes are specific to myeloid cells and are more highly expressed in patients with shorter survival. We also observe that significant numbers of prognostic genes change expression levels in PBMC collected after tumor resection. These post-surgery gene expression profiles may provide a means to re-evaluate prognosis over time. These studies further suggest that patient outcomes are not solely determined by tumor gene expression profiles but can also be influenced by the immune response as reflected in peripheral immune cells

    Physics of leptoquarks in precision experiments and at particle colliders

    Full text link
    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g-2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.Comment: 136 pages, 22 figures, typographical errors fixed, the Physics Reports versio

    Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley

    Get PDF
    We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M⋆ = 0.39 M⊙, R⋆ = 0.38 R⊙), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M⊕, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the ‘radius valley’ – a region in the radius-period diagram with relatively few members – which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere

    Full-Exon Pyrosequencing Screening of BRCA Germline Mutations in Mexican Women with Inherited Breast and Ovarian Cancer

    Get PDF
    Hereditary breast cancer comprises 10% of all breast cancers. The most prevalent genes causing this pathology are BRCA1 and BRCA2 (breast cancer early onset 1 and 2), which also predispose to other cancers. Despite the outstanding relevance of genetic screening of BRCA deleterious variants in patients with a history of familial cancer, this practice is not common in Latin American public institutions. In this work we assessed mutations in the entire exonic and splice-site regions of BRCA in 39 patients with breast and ovarian cancer and with familial history of breast cancer or with clinical features suggestive for BRCA mutations by massive parallel pyrosequencing. First we evaluated the method with controls and found 41–485 reads per sequence in BRCA pathogenic mutations. Negative controls did not show deleterious variants, confirming the suitability of the approach. In patients diagnosed with cancer we found 4 novel deleterious mutations (c.2805_2808delAGAT and c.3124_3133delAGCAATATTA in BRCA1; c.2639_2640delTG and c.5114_5117delTAAA in BRCA2). The prevalence of BRCA mutations in these patients was 10.2%. Moreover, we discovered 16 variants with unknown clinical significance (11 in exons and 5 in introns); 4 were predicted as possibly pathogenic by in silico analyses, and 3 have not been described previously. This study illustrates how massive pyrosequencing technology can be applied to screen for BRCA mutations in the whole exonic and splice regions in patients with suspected BRCA-related cancers. This is the first effort to analyse the mutational status of BRCA genes on a Mexican-mestizo population by means of pyrosequencing

    Cork : properties, capabilities and applications

    Get PDF
    Cork is a natural, renewable, sustainable raw material that has been used for many centuries. As a result of this very long term interest, the scientific literature on cork is extensive. The present review focuses on the chemical composition, physical and mechanical properties of cork and on its products and sub-products. The substantial efforts to fully characterise cork, as well as new developments and evolving research, are reviewed, beginning with its histology, growth and morphology (at macro- and microscales). The chemical structure is analysed in detail, covering both the materials that form the wall structure and the low molecular weight, extractable components. The unique properties of cork are discussed and correlated with current knowledge on morphology and chemical structure. Finally, the important industrial applications of cork are reviewed, in the context of research to provide cork with novel, high added-value applications

    The Cumulative Effects of Polymorphisms in the DNA Mismatch Repair Genes and Tobacco Smoking in Oesophageal Cancer Risk

    Get PDF
    The DNA mismatch repair (MMR) enzymes repair errors in DNA that occur during normal DNA metabolism or are induced by certain cancer-contributing exposures. We assessed the association between 10 single-nucleotide polymorphisms (SNPs) in 5 MMR genes and oesophageal cancer risk in South Africans. Prior to genotyping, SNPs were selected from the HapMap database, based on their significantly different genotypic distributions between European ancestry populations and four HapMap populations of African origin. In the Mixed Ancestry group, the MSH3 rs26279 G/G versus A/A or A/G genotype was positively associated with cancer (OR = 2.71; 95% CI: 1.34–5.50). Similar associations were observed for PMS1 rs5742938 (GG versus AA or AG: OR = 1.73; 95% CI: 1.07–2.79) and MLH3 rs28756991 (AA or GA versus GG: OR = 2.07; 95% IC: 1.04–4.12). In Black individuals, however, no association between MMR polymorhisms and cancer risk was observed in individual SNP analysis. The interactions between MMR genes were evaluated using the model-based multifactor-dimensionality reduction approach, which showed a significant genetic interaction between SNPs in MSH2, MSH3 and PMS1 genes in Black and Mixed Ancestry subjects, respectively. The data also implies that pathogenesis of common polymorphisms in MMR genes is influenced by exposure to tobacco smoke. In conclusion, our findings suggest that common polymorphisms in MMR genes and/or their combined effects might be involved in the aetiology of oesophageal cancer
    corecore