183 research outputs found

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Mapping interactions between the RNA chaperone FinO and its RNA targets

    Get PDF
    Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5′-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem–loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3′ single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3′-nucleotide blocks FinO binding, suggesting FinO binds the 3′-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO–SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation

    Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    Get PDF
    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of positioned nucleosomes

    Phage Display against Corneal Epithelial Cells Produced Bioactive Peptides That Inhibit Aspergillus Adhesion to the Corneas

    Get PDF
    Dissection of host-pathogen interactions is important for both understanding the pathogenesis of infectious diseases and developing therapeutics for the infectious diseases like various infectious keratitis. To enhance the knowledge about pathogenesis infectious keratitis, a random 12-mer peptide phage display library was screened against cultured human corneal epithelial cells (HCEC). Fourteen sequences were obtained and BLASTp analysis showed that most of their homologue counterparts in GenBank were for defined or putative proteins in various pathogens. Based on known or predicted functions of the homologue proteins, ten synthetic peptides (Pc-A to Pc-J) were measured for their affinity to bind cells and their potential efficacy to interfere with pathogen adhesion to the cells. Besides binding to HCEC, most of them also bound to human corneal stromal cells and umbilical endothelial cells to different extents. When added to HCEC culture, the peptides induced expression of MyD88 and IL-17 in HCEC, and the stimulated cell culture medium showed fungicidal potency to various extents. While peptides Pc-C and Pc-E inhibited Aspergillus fumigatus (A.f) adhesion to HCEC in a dose-dependent manner, the similar inhibition ability of peptides Pc-A and Pc-B required presence of their homologue ligand Alb1p on A.f. When utilized in an eyeball organ culture model and an in vivo A.f keratitis model established in mouse, Pc-C and Pc-E inhibited fungal adhesion to corneas, hence decreased corneal disruption caused by inflammatory infiltration. Affinity pull-down of HCEC membrane proteins with peptide Pc-C revealed several molecules as potential receptors for this peptide. In conclusion, besides proving that phage display-selected peptides could be utilized to interfere with adhesion of pathogens to host cells, hence could be exploited for managing infectious diseases including infectious keratitis, we also proposed that the phage display technique and the resultant peptides could be used to explore host-pathogen interactions at molecular levels

    Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function

    Get PDF
    Bacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9–80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection

    Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation

    Get PDF
    Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show that the core region of solid tumours displayed glutamine deficiency compared with other amino acids. Low glutamine in tumour core regions led to dramatic histone hypermethylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain-containing histone demethylases. Using patient-derived ^(V600E)BRAF melanoma cells, we found that low-glutamine-induced histone hypermethylation resulted in cancer cell dedifferentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and the methyltransferase EZH2 respectively reproduced and attenuated the low-glutamine effects in vitro and in vivo. Thus, intratumoral regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response

    Oak canopy arthropod communities: which factors shape its structure?

    Full text link

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link
    corecore