395 research outputs found
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earthâs surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between âŒ1 m and âŒ1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of â„500 ÎŒm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550â850 nm on Mars and around 0.5 % in the wavelength range from 300â1100 nm on Earth. The removal of an equivalent layer thickness around 1 ÎŒm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Genome-wide DNA methylation patterns associated with sleep and mental health in children: a population-based study
Background: DNA methylation (DNAm) has been implicated in the biology of sleep. Yet, how DNAm patterns across the genome relate to different sleep outcomes, and whether these associations overlap with mental health is currently unknown. Here, we investigated associations of DNAm with sleep and mental health in a pediatric population. Methods: This cross-sectional study included 465 10-year-old children (51.3% female) from the Generation R Study. Genome-wide DNAm levels were measured using the Illumina 450K array (peripheral blood). Sleep problems were assessed from self-report and mental health outcomes from maternal questionnaires. Wrist actigraphy was used in 188 11-year-old children to calculate sleep duration and midpoint sleep. Weighted gene co-expression network analysis was used to identify highly comethylated DNAm âmodulesâ, which were tested for associations with sleep and mental health outcomes. Results: We identified 64 DNAm modules, one of which associated with sleep duration after covariate and multiple testing adjustment. This module included CpG sites spanning 9 genes on chromosome 17, including MAPT â a key regulator of Tau proteins in the brain involved in neuronal function â as well as genes previously implicated in sleep duration. Follow-up analyses suggested that DNAm variation in this region is under considerable genetic control and shows strong bloodâbrain concordance. DNAm modules associated with sleep did not overlap with those associated with mental health. Conclusions: We identified one DNAm region associated with sleep duration, including genes previously reported by recent GWAS studies. Further research is warranted to examine the functional role of this region and its longitudinal association with sleep
Microfluidic analysis techniques for safety assessment of pharmaceutical nano- and microsystems
This chapter reviews the evolution of microfabrication methods and materials, applicable to manufacturing of micro total analysis systems (or labâonâaâchip), from a general perspective. It discusses the possibilities and limitations associated with microfluidic cell culturing, or so called organâonâaâchip technology, together with selected examples of their exploitation to characterization of pharmaceutical nanoâ and microsystems. Materials selection plays a pivotal role in terms of ensuring the cell adhesion and viability as well as defining the prevailing culture conditions inside the microfluidic channels. The chapter focuses on the hepatic safety assessment of nanoparticles and gives an overview of the development of microfluidic immobilized enzyme reactors that could facilitate examination of the hepatic effects of nanomedicines under physiologically relevant conditions. It also provides an overview of the future prospects regarding systemâlevel integration possibilities facilitated by microfabrication of miniaturized separation and sample preparation systems as integral parts of microfluidic in vitro models.Non peer reviewe
Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients
Background:
To quantify the association between effects of interventions on carotid intima-media thickness (cIMT) progression and their effects on cardiovascular disease (CVD) risk.
Methods:
We systematically collated data from randomized, controlled trials. cIMT was assessed as the mean value at the common-carotid-artery; if unavailable, the maximum value at the common-carotid-artery or other cIMT measures were used. The primary outcome was a combined CVD end point defined as myocardial infarction, stroke, revascularization procedures, or fatal CVD. We estimated intervention effects on cIMT progression and incident CVD for each trial, before relating the 2 using a Bayesian meta-regression approach.
Results:
We analyzed data of 119 randomized, controlled trials involving 100 667 patients (mean age 62 years, 42% female). Over an average follow-up of 3.7 years, 12 038 patients developed the combined CVD end point. Across all interventions, each 10 ÎŒm/y reduction of cIMT progression resulted in a relative risk for CVD of 0.91 (95% Credible Interval, 0.87â0.94), with an additional relative risk for CVD of 0.92 (0.87â0.97) being achieved independent of cIMT progression. Taken together, we estimated that interventions reducing cIMT progression by 10, 20, 30, or 40 ÎŒm/y would yield relative risks of 0.84 (0.75â0.93), 0.76 (0.67â0.85), 0.69 (0.59â0.79), or 0.63 (0.52â0.74), respectively. Results were similar when grouping trials by type of intervention, time of conduct, time to ultrasound follow-up, availability of individual-participant data, primary versus secondary prevention trials, type of cIMT measurement, and proportion of female patients.
Conclusions:
The extent of intervention effects on cIMT progression predicted the degree of CVD risk reduction. This provides a missing link supporting the usefulness of cIMT progression as a surrogate marker for CVD risk in clinical trials
Placental effects and transfer of sildenafil in healthy and preeclamptic conditions
Background: The phosphodiesterase-5 inhibitor (PDE5) sildenafil has emerged as a promising treatment for preeclampsia (PE). However, a sildenafil trial was recently halted due to lack of effect and increased neonatal morbidity. Methods: Ex vivo dual-sided perfusion of an isolated cotyledon and wire-myography on chorionic plate arteries were performed to study the effects of sildenafil and the non-selective PDE inhibitor vinpocetine on the response to the NO donor sodium nitroprusside (SNP) under healthy and PE conditions. Ex vivo perfusion was also used to study placental transfer of sildenafil in 6 healthy and 2 PE placentas. Furthermore, placental mRNA and protein levels of eNOS, iNOS, PDE5 and PDE1 were quantified. Findings: Sildenafil and vinpocetine significantly enhanced SNP responses in chorionic plate arteries of healthy, but not PE placentas. Only sildenafil acutely decreased baseline tension in arteries of both healthy and PE placentas. At steady state, the foetal-to-maternal transfer ratio of sildenafil was 0·37 ± 0·03 in healthy placentas versus 0·66 and 0·47 in the 2 PE placentas. mRNA and protein levels of PDE5, eNOS and iNOS wer
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector
A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fbâ1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter
Measurement of the cross section for isolated-photon plus jet production in pp collisions at âs=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in protonâproton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fbâ1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photonâjet invariant mass and the scattering angle in the photonâjet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
- âŠ