58 research outputs found

    Introduction

    Get PDF
    Introduzione al numero Economie del corpo femminile dal XVI al XXI secolo in America Latina, Europa e Giappone, a cura di Marie-Christine Jullion e Irina Bajini (Università degli Studi di Milano), Mélanie Moreau (Université de Bordeaux-Montaigne)

    Untangling biogeochemical processes from the impact of ocean circulation: First insight on the Mediterranean dissolved barium dynamics

    Get PDF
    Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 ÎŒmol m−2 d−1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from −0.07 to −1.28 ÎŒmol m−2 d−1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 ÎŒmol m−2 d−1) and organic carbon (13 to 29 mmol C m−2 d−1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies

    La clarté rédactionnelle en droit et ses multiples horizons [Clear legal writing: A pluridisciplinary approach]

    Get PDF
    The present contribution aims at highlighting the role of clear legal writing in the framework of national and international institutional contexts. Clear legal writing will be analysed with respect to three different areas of study: juridical linguistics, translation studies and international cooperation. Juridical linguistics is currently exploring the multiple specific needs and challenges of clear legal writing in the different branches of law on national as well as international level. Translation Studies highlight the specificity of legal translation by defining this practice as a particular case of specialized translation which varies according to its operational context. Multilingualism actually implies a new definition of translation as multilingual co-writing. International cooperation studies how clear legal writing can be ensured with respect to the normative and standard-settings activity and the associated diplomatic and political issues belonging to international organisations. The interest of such a multi-disciplinary approach is the possibility of correlating those complementary perspectives of analysis in order to better understand the notion of clear writing as well as its importance in the field of law-making

    Carbon dynamics of the Weddell Gyre, Southern Ocean

    Get PDF
    The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbonmeasurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyre’s carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058 ± 0.010 Pg C / yr derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002± 0.007 Pg C / yr (mean 1998–2011) to 0.012 ± 0.024 Pg C/ yr (mean 2008–2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived fromin situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033 ± 0.021 Pg C / yr. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales

    Weddell Sea Export Pathways from Surface Drifters

    Get PDF
    The complex export pathways that connect the surface waters of the Weddell Sea with the Antarctic Circumpolar Current influence water mass modification, nutrient fluxes, and ecosystem dynamics. To study this exchange, 40 surface drifters, equipped with temperature sensors, were released into the northwestern Weddell Sea’s continental shelf and slope frontal system in late January 2012. Comparison of the drifter trajectories with a similar deployment in early February 2007 provides insight into the interannual variability of the surface circulation in this region. Observed differences in the 2007 and 2012 drifter trajectories are related to a variable surface circulation responding to changes in wind stress curl over the Weddell Gyre. Differences between northwestern Weddell Sea properties in 2007 and 2012 include 1) an enhanced cyclonic wind stress forcing over the Weddell Gyre in 2012; 2) an acceleration of the Antarctic Slope Current (ASC) and an offshore shift of the primary drifter export pathway in 2012; and 3) a strengthening of the Coastal Current (CC) over the continental shelf in 2007. The relationship between wind stress forcing and surface circulation is reproduced over a longer time period in virtual drifter deployments advected by a remotely sensed surface velocity product. The mean offshore position and speed of the drifter trajectories are correlated with the wind stress curl over the Weddell Gyre, although with different temporal lags. The drifter observations are consistent with recent modeling studies suggesting that Weddell Sea boundary current variability can significantly impact the rate and source of exported surface waters to the Scotia Sea, a process that determines regional chlorophyll distributions

    Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S

    Get PDF
    The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the watermasses present. Surface Zn concentrations are among the lowest reported for theworld’s oceans (<50 pM). A strong Zn-Si linear relationshipwas observed (Zn (nM)= 0.065 Si (ÎŒM), r2=0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions

    Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation

    Get PDF
    The lower limb of the Atlantic overturning circulation is resupplied by the sinking of dense Antarctic Bottom Water (AABW) that forms via intense air–sea–ice interactions next to Antarctica, especially in the Weddell Sea. In the last three decades, AABW has warmed, freshened and declined in volume across the Atlantic Ocean and elsewhere, suggesting an ongoing major reorganization of oceanic overturning. However, the future contributions of AABW to the Atlantic overturning circulation are unclear. Here, using observations of AABW in the Scotia Sea, the most direct pathway from the Weddell Sea to the Atlantic Ocean, we show a recent cessation in the decline of the AABW supply to the Atlantic overturning circulation. The strongest decline was observed in the volume of the densest layers in the AABW throughflow from the early 1990s to 2014; since then, it has stabilized and partially recovered. We link these changes to variability in the densest classes of abyssal waters upstream. Our findings indicate that the previously observed decline in the supply of dense water to the Atlantic Ocean abyss may be stabilizing or reversing and thus call for a reassessment of Antarctic influences on overturning circulation, sea level, planetary-scale heat distribution and global climate

    Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs I : Characterizing Benchmarks, Gl570D and HD3651B

    Get PDF
    Michael Line, et al, 'UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B', The Astrophysical Journal, Vol. 802 (2), July 2015, doi: https://doi.org/10.1088/0004-637X/807/2/183, published by IOP.Interpreting the spectra of brown dwarfs is key to determining the fundamental physical and chemical processes occurring in their atmospheres. Powerful Bayesian atmospheric retrieval tools have recently been applied to both exoplanet and brown dwarf spectra to tease out the thermal structures and molecular abundances to understand those processes. In this manuscript we develop a significantly upgraded retrieval method and apply it to the SpeX spectral library data of two benchmark late T-dwarfs, Gl570D and HD3651B, to establish the validity of our upgraded forward model parameterization and Bayesian estimator. Our retrieved metallicities, gravities, and effective temperature are consistent with the metallicity and presumed ages of the systems. We add the carbon-to-oxygen ratio as a new dimension to benchmark systems and find good agreement between carbon-to-oxygens ratio derived in the brown dwarfs and the host stars. Furthermore, we have for the first time unambiguously determined the presence of ammonia in the low-resolution spectra of these two late T-dwarfs. We also show that the retrieved results are not significantly impacted by the possible presence of clouds, though some quantities are significantly impacted by uncertainties in photometry. This investigation represents a watershed study in establishing the utility of atmospheric retrieval approaches on brown dwarf spectra.Peer reviewedFinal Published versio

    Seasonal cycle of CO2 from the sea ice edge to island blooms in the Scotia Sea, Southern Ocean

    Get PDF
    The Scotia Sea region contains some of the most productive waters of the Southern Ocean. It is also a dynamic region through the interaction of deep water masses with the atmosphere. We present a first seasonally-resolved time series of the fugacity of CO2 (fCO2) from spring 2006, summer 2008, autumn 2009 and winter (potential temperature minimum) along a 1000 km transect from the pack ice to the Polar Front to quantify the effects of biology and temperature on oceanic fCO2. Substantial spring and summer decreases in sea surface fCO2 occurred in phytoplankton blooms that developed in the naturally iron fertilised waters downstream (north) of South Georgia island (54-55S, 36-38W) and following sea ice melt (in the seasonal ice zone). The largest seasonal fCO2 amplitude (fCO2) of 159 uatm was found in the South Georgia bloom. In this region, biological carbon uptake dominated the seasonal signal, reducing the winter maxima in oceanic fCO2 by 257 uatm by the summer. In the Weddell-Scotia Confluence, the southern fringe of the Scotia Sea, the shift from wintertime CO2-rich conditions in ice covered waters to CO2 undersaturation in the spring blooms during and upon sea ice melt created strong seasonality in oceanic fCO2. Temperature effects on oceanic fCO2 ranged from fCO2sst of 55 uatm in the seasonal ice zone to almost double that downstream of South Georgia (98 uatm). The seasonal cycle of surface water fCO2 in the high-nutrient low-chlorophyll region of the central Scotia Sea had the weakest biological control and lowest seasonality. Basin-wide biological processes dominated the seasonal control on oceanic fCO2 (fCO2bio of 159 ÎŒatm), partially compensated (43%) by moderate temperature control (fCO2sst of 68 ÎŒatm). The patchwork of productivity across the Scotia Sea creates regions of seasonally strong biological uptake of CO2 in the Southern Ocean

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia Âź; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-ÎșB localization and IÎșB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-ÎșB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-ÎșB and degradation of IÎșB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-ÎșB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
    • 

    corecore