224 research outputs found

    NetCDF model output of the entire state of the surface layer, including simulated dFe dyes, of the circum-Antarctic

    Get PDF
    Dataset: Antarctic dFe model dyesFor a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782848NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1643652, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-164361

    The Influence of Open Versus Periodic Alongshore Boundaries on Circulation Near Submarine Canyons

    Get PDF
    It is impractical to create gridded numerical models of coastal circulation with sufficient resolution around small topographic features, such as submarine canyons, and still have the alongshore boundaries placed beyond the decay distance of coastal trapped waves. Two solutions to this problem are to make the alongshore boundaries either open or periodic. Numerical simulations were performed with upwelling and downwelling winds to compare the effects of these different choices for boundary conditions. Several open boundary formulations were tried and three are discussed in detail. The offshore boundary was specified as no gradient\u27\u27 for all variables with no serious effect. The modified\u27\u27 Orlanski radiation condition is used for all variables at the alongshore boundaries, except the vertically integrated flow that has the strongest effect on the model solution. An alongshore pressure gradient, opposing the wind, develops in the model if the modified Orlanski radiation condition is applied to the barotropic flow, causing slower currents near the surface and deep undercurrents away from the shelf. The other cases, which combined either a radiation or a relaxation boundary condition with a local solution of the barotropic equations on the boundary, were at least initially similar to the periodic case but with slower alongshore flow. The initial impact of these differences on the circulation within the canyon was small. The models with the open boundaries were more stable (did not develop strong flow meanders) than the cases with periodic conditions as initial transients are not trapped, and amplified, within the domain. Thus, open cases, especially with the upwelling winds, could run for extended times

    Exchange Across the Shelf Break at High Southern Latitudes

    Get PDF
    Exchange of water across the Antarctic shelf break has considerable scientific and societal importance due to its effects on circulation and biology of the region, conversion of water masses as part of the global overturning circulation and basal melt of glacial ice and the consequent effect on sea level rise. The focus in this paper is the onshore transport of warm, oceanic Circumpolar Deep Water (CDW); export of dense water from these shelves is equally important, but has been the focus of other recent papers and will not be considered here. A variety of physical mechanisms are described which could play a role in this onshore flux. The relative importance of some processes are evaluated by simple calculations. A numerical model for the Ross Sea continental shelf is used as an example of a more comprehensive evaluation of the details of cross-shelf break exchange. In order for an ocean circulation model to simulate these processes at high southern latitudes, it needs to have high spatial resolution, realistic geometry and bathymetry. Grid spacing smaller than the first baroclinic radius of deformation (a few km) is required to adequately represent the circulation. Because of flow-topography interactions, bathymetry needs to be represented at these same small scales. Atmospheric conditions used to force these circulation models also need to be known at a similar small spatial resolution (a few km) in order to represent orographically controlled winds (coastal jets) and katabatic winds. Significantly, time variability of surface winds strongly influences the structure of the mixed layer. Daily, if not more frequent, surface fluxes must be imposed for a realistic surface mixed layer. Sea ice and ice shelves are important components of the coastal circulation. Ice isolates the ocean from exchange with the atmosphere, especially in the winter. Melting and freezing of both sea ice and glacial ice influence salinity and thereby the character of shelf water. These water mass conversions are known to have an important effect on export of dense water from many Antarctic coastal areas. An artificial dye, as well as temperature, is used to diagnose the flux of CDW onto the shelf. Model results for the Ross Sea show a vigorous onshore flux of oceanic water across the shelf break both at depth and at the surface as well as creation of dense water (High Salinity Shelf Water) created by coastal polynyas in the western Ross Sea

    Frontogenesis in the North Pacific Oceanic Frontal Zones--A Numerical Simulation

    Get PDF
    A primitive equation model [Geophysical Fluid Dynamics Laboratory\u27s (GFDL\u27s) MOM 2] with one degree horizontal resolution is used to simulate the seasonal cycle of frontogenesis in the subarctic frontal zone (SAFZ) and the subtropical frontal zone (STFZ) of the North Pacific Ocean. The SAFZ in the model contains deep (greater than 500 m in some places) regions with seasonally varying high gradients in temperature and salinity. The gradients generally weaken toward the east. The STFZ consists of a relatively shallow (less than 200 m in most places) region of high gradient in temperature that disappears in the summer/fall. The high gradient in salinity in the STFZ maintains its strength year round and extends across almost the entire basin. The model simulates the location and intensity of the frontal zones in good agreement with climatological observations: generally to within two degrees of latitude and usually at the same or slightly stronger intensity. The seasonal cycle of the frontal zones also marches observations well, although the subarctic front is stronger than observed in winter and spring. The model balances are examined to identify the dominant frontogenetic processes. The seasonal cycle of temperature frontogenesis in the surface level of the model is governed by both the convergence of the wind-driven Ekman transport and differential heating/cooling. In the STFZ, the surface Ekman convergence is frontogenetic throughout the year as opposed to surface heating, which is frontogenetic during winter and strongly frontolytic during late spring and summer. The subarctic front at 40 degrees N in the central Pacific (not the maximum wintertime gradient in the model, but its location in summer and the location where variability is in best agreement with the observations) undergoes frontogenesis during spring and summer due to surface Ekman convergence and differential horizontal shear. The frontolysis during winter is due to the joint influence of differential heat flux and vertical convection in opposition to frontogenetic Ekman convergence. The seasonal cycle of salinity frontogenesis in the surface level is governed by Ekman convergence, differential surface freshwater flux, and differential vertical convection (mixing). For salinity, the differential convection is primarily forced by Ekman convergence and differential cooling, thereby linking the salinity and temperature frontogenesis/frontolysis. Below the surface level, the seasonal frontogenesis/frontolysis is only significant in the western and central SAFZ where ii is due primarily to differential mixing (mostly in winter and early spring) with contributions from convergence and shearing advection during fall and winter. The shearing advection in the model western SAFZ is likely a result of the Kuroshio overshooting its observed separation latitude. The model\u27s vertical mixing through convective adjustment is found to be very important in controlling much of the frontogenesis/frontolysis. Thus, the seasonal cycle of the surface frontal variability depends strongly on the subsurface structure

    The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century

    Get PDF
    The Ross Sea is critically important in regulating Antarctic sea ice and is biologically productive, which makes changes in the region\u27s physical environment of global concern. We examined the effects of projected changes in atmospheric temperatures and winds on aspects of the ocean circulation likely important to primary production using a high-resolution sea ice-ocean-ice shelf model of the Ross Sea. The modeled summer sea-ice concentrations decreased by 56% by 2050 and 78% by 2100. The duration of shallow mixed layers over the continental shelf increased by 8.5 and 19.2days in 2050 and 2100, and the mean summer mixed layer depths decreased by 12 and 44%. These results suggest that the annual phytoplankton production in the future will increase and become more diatomaceous. Other components of the Ross Sea food web will likely be severely disrupted, creating significant but unpredictable impacts on the ocean\u27s most pristine ecosystem. Key Points Ross Sea will be modified in ice-free duration and summer ice concentrations Modeled summer mixed layers decreased by 26 and 46% in 50 and 100 years The food web will undergo severe disruptions in the coming centur

    Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula

    Get PDF
    The flux of warm deep water onto Antarctic continental shelves plays a vital role in determining water mass properties adjacent to the continent. A regional model, with two different grid resolutions, has been used to simulate ocean processes along the West Antarctic Peninsula. At both 4 km and 1.5 km resolution, the model reproduces the locations of warm intrusions, as shown through comparison with observations from instrumented seals. However, the 1.5 km simulation shows greater on‐shelf heat transport, leading to improved representation of heat content on the shelf. This increased heat transport is associated with increased eddy activity, both at the shelf‐break and in the deep ocean off‐shore. Cross‐shelf troughs are key locations of on‐shelf heat transport. Comparison of two troughs, Belgica and Marguerite, shows differing responses to increased resolution. At higher resolution, there is an increased on‐shelf volume transport at Belgica Trough, but not at Marguerite Trough. This is likely related to the differing structure of the shelf‐break jet between these two locations. The increased heat flux at Marguerite Trough is attributed to increased heat content in the on‐shelf transport. Increased eddy activity off‐shelf may lead to greater cross‐front heat transport, and therefore increased heat available above the continental slope. While these simulations differ in their magnitude of heat transport, both show similar patterns of variability. Variations in wind stress lead to variations in speed of the shelf‐break jet, and therefore on‐shelf heat transport. These results demonstrate the importance of model resolution for understanding cross‐shelf transport around Antarctica

    Examining the Connectivity of Antarctic Krill on the West Antarctic Peninsula: Implications for Pygoscelis Penguin Biogeography and Population Dynamics

    Get PDF
    Antarctic krill (Euphausia superba) are considered a keystone species for higher trophic level predators along the West Antarctic Peninsula (WAP) during the austral summer. The connectivity of these populations may play a critical role in predator biogeography, especially for central-place foragers such as the Pygoscelis penguins that breed along the WAP during the austral summer. Here, we used a physical ocean model to examine adult krill connectivity in this region using simulated krill with realistic diel vertical migration behaviors across four austral summers. Specifically, we examined krill connectivity around the Adélie gap, a 400 km long region along the WAP with a distinct absence of Adélie penguin colonies, to determine if krill population connectivity around this feature played a role in its persistence. Our results indicate that krill populations north and south of the Adélie gap are nearly isolated from each other and that persistent current features play a role in this inter-region connectivity, or lack thereof. Our results indicate that simulated krill released within the Adélie gap are quickly advected from the region, suggesting that the lack of local krill recruit retention may play a role in the persistence of this biogeographic feature

    Seasonal Variations in Circumpolar Deep Water Intrusions Into The Ross Sea Continental Shelf

    Get PDF
    Intrusions of the warm and nutrient-rich Circumpolar Deep Water (CDW) across the Ross Sea shelf break play an important role in providing heat for ice shelf basal melting and setting the physical environment for biochemical processes. Several mechanisms driving CDW intrusions into the Ross Sea were proposed such as mesoscale eddies, tidal rectification, and interactions between Antarctic Slope Current (ASC) and topographic features. The seasonal variations in the poleward transport of CDW are investigated using ERA-Interim wind data and a Ross Sea circulation model based on the Regional Ocean Modeling System (ROMS) between September 1999 and September 2014. The analyses focus on the currents along the shelf break and deep troughs on the Ross Sea shelf and discuss the wind-driven Ekman pumping in both shelf and adjacent open ocean regions. The results reveal that the poleward intrusions generally move up onto the continental shelf along the eastern flanks of deep troughs. Seasonal variations of the ocean surface stress torque exerted by wind and sea ice in the offshelf area are correlated with CDW intrusions. The maxima of CDW intrusions usually occur in austral summer. There is a significant temporal correlation on the seasonal time scale between the onshelf intrusions in deep troughs in the western Ross Sea shelf and poleward Sverdrup transports in the adjacent offshelf open ocean driven by Ekman pumping. The analysis of ocean surface stress fields also indicates that the vorticity fluxes through Ekman pumping are in favor of southward and northward transports in the eastern and western parts of the Ross Sea, respectively. The relationships between currents, CDW intrusions and ocean surface stress fields imply the importance of air-sea interactions and potential climate change to the environment in the Ross Sea

    Dissolved oxygen dynamics during a phytoplankton bloom in the Ross Sea polynya

    Get PDF
    The Ross Sea polynya is one of the most productive regions in the Southern Ocean. However, limited access and high spatio-temporal variability of physical and biological processes limit the use of conventional oceanographic methods to measure early season primary productivity. High-resolution observations from two Seagliders provide insights into the timing of a bloom in the southern Ross Sea polynya in December 2010. Changes in chlorophyll and oxygen concentrations are used to assess bloom dynamics. Using a ratio of dissolved oxygen to carbon, net primary production is estimated over the duration of the bloom showing a sensitive balance between net autotrophy and heterotrophy. The two gliders, observing spatially distinct regions during the same period, found net community production rates of -0.9±0.7 and 0.7±0.4 g C m-2 d-1. The difference highlights the spatial variability of biological processes and is probably caused by observing different stages of the bloom. The challenge of obtaining accurate primary productivity estimates highlights the need for increased observational efforts, particularly focusing on subsurface processes not resolved using surface or remote observations. Without an increased observational effort and the involvement of emerging technologies, it will not be possible to determine the seasonal trophic balance of the Ross Sea polynya and quantify the shelf's importance in carbon export
    • 

    corecore